MME 3518
POWDER METALLURGY

• 2 Midterm Exams- 50 %
• Pop-quizes-10 %
• Final Exam- 40 %
COURSE MATERIAL

• Lecture Notes
• G.S. Upadhyaya, Powder Metallurgy Technology

Suggested Readings
• S. A. Tsukerman, Powder Metallurgy
• R.M. German, Powder Metallurgy Science
Definition of Powder Metallurgy

• Powder metallurgy may defined as, “the art and science of producing metal powders and utilizing them to make serviceable objects.”

 OR

• It may also be defined as “material processing technique used to consolidate particulate matter i.e. powders both metal and/or non-metals.”

 OR

• is a process whereby a solid metal, alloy or ceramic in the form of a mass of dry particles is converted into an engineering component of predetermined shape and possessing properties which allow it to be used in most cases without further processing.
• Powder metallurgy is a forming and fabrication technique consisting of three major processing stages.
 – First, the primary material is physically powdered, divided into many small individual particles.
 – Next, the powder is injected into a mold or passed through a die to produce a weakly cohesive structure (via cold welding) very near the dimensions of the object ultimately to be manufactured.
 – Finally, the end part is formed by applying pressure, high temperature, long setting times during which self-welding occurs.
Powder Metallurgy

- **Subject Matter**
 - Powder metallurgy (PM) is the art and science of manufacturing complex shaped objects from powders
 - It includes all manufacturing steps to produce the final product
 - Powder production
 - Blending
 - Shaping and compaction
 - Sintering
 - This course covers all these aspects of this manufacturing process with emphasis on structure-processing-properties relationships.

- **Objectives**
 - To learn the technology
 - To gain insight into scientific principles underlying design and operation of PM processes
 - To be able to select and design the optimal processing route for any given product properties.
Powder Metallurgy (PM)

Metal processing technology in which parts are produced from metallic powders

- PM parts can be mass produced to net shape or near net shape, eliminating or reducing the need for subsequent machining

- Certain metals that are difficult to fabricate by other methods can be shaped by PM

- Tungsten filaments for lamp bulbs are made by PM

- PM process wastes very little material ~ 97% of starting powders are converted to product

- PM parts can be made with a specified level of porosity, to produce porous metal parts

- Examples: filters, oil-impregnated bearings and gears
Basic steps of the Powder Metallurgy Process.
PM Parts

A collection of powder metallurgy parts.
Connecting Rods:
Forged on left; P/M on right

Powdered Metal Transmission Gear
- Warm compaction method with 1650-ton press
- Teeth are molded net shape: No machining
- $UTS = 155,000 \text{ psi}$
- 30% cost savings over the original forged part
Industrial Machines Parts
For Electric Motors
PM vs. Other Fabrication Methods
(casting, stamping or machining)

• PM is the choice when requirements for strength, wear resistance or high operating temperatures exceed the capabilities of die casting alloys.
• PM offers greater precision, eliminating most or all of the finish machining operations required for castings.
• It avoids casting defects such as blow holes, shrinkage and inclusions. Powder injection molding is coming out as a big challenge for investment casting.
• However the PM process is economical only when production rates are higher, since the tooling cost is quite appreciable.
The powder metallurgy methods starts with powders and the properties of the manufactured parts depend to a large extent on the properties of the initial powders.

Amongst powder properties, composition, size, form and structure of particle, specific surface, porosity and volume characteristics, fluidity, strength, hardness, permeability regarding liquids and gases, electric conductivity, compressibility and sinterability are of great importance in powder metallurgy.

Metal powders consist of separate small bodies—the so-called particles—from 0.1 μ up to several millimeters in size.

In the majority of powders the size of particle varies from several microns to 0.5 mm. Particles usually have internal pores, cracks and impurities.
Particle shape is widely varied and determined by the methods of production; the desired particle size is obtained by regulating the conditions of manufacture. Particles are divided according to their shape into three basic groups:

1. hair or needle-shaped, the lengths of which considerably exceed their other dimensions;
2. flat (flakes or leaves) whose length and breadth are many times greater than their thickness;
3. equiaxed, which are roughly identical in all dimensions.
Powders of the same chemical composition, but with different physical characteristics, are sharply distinguished by technological properties, i.e. by their behaviour during processing.

Production methods and the fields of application for powders are determined with powder properties (shape, size).

Example: copper powder with particles in the form of offtakes (flat) up to 1 μ thick and up to 50 μ in diameter are used only as a pigment since any articles made from it contain cracks after pressing.

Copper powder with particles of spherical form (globules) from 100 to 700 μ in diameter is pressed only at very high pressures.

A powder with irregularly shaped particles, so called dendritic, 40-45 μ in size is easily pressed even at low pressures.
Powder Metallurgy Technology

- General Classification
 - Powder Technology
 - Powder Processing

- Powder technology
 - It involves all processing operations to prepare the particles in the 100 μm range for subsequent shaping and consolidation processes.
 - Powder fabrication
 - Mechanical
 - Atomization
 - Electrolysis
 - Chemical synthesis
 - Particle classification
 - Particle handling, modification and mixing
 - Particle characterization and microstructure control are essential components of powder technology
Powder Metallurgy Technology (cont.)

- **Powder Processing**
 - It involves all operations to consolidate the particles to the final product
 - Shaping and compaction
 - Sintering
 - Densification
 - Finishing operations
 - Machining
 - Heat treatment
 - Joining
 - Coating
 - Selection of processing methods depends on desired properties of final product.
Why Powder metallurgy?

It the only near net-shape manufacturing technology capable of fabricating parts for all types of materials

- Metals and intermetallics
- Ceramics
- Engineered materials: Composites and porous materials

- Advantages
 - Achieves a wide variety of alloy systems
 - Facilitates manufacture of complex or unique shapes which would be impractical or impossible with other metalworking processes
 - Maintains close dimensional tolerances
 - Produces good surface finishes and eliminates or minimizes machining
 - Provides controlled porosity for self-lubrication or filtration applications
 - Suited to moderate-to-high volume component productions requirements
Applications

Powder metallurgy is used in various industrial sectors:

- Automobile industry (motors, gear assemblies, brake pads)
- Abrasives (polishing and grinding wheels)
- Manufacturing (cutting and drilling tools)
- Electric and magnetic devices (magnets, soft magnetic cores)
- Medical and dental (implants, prostheses, amalgams)
- Aerospace (motors, heat shields, structural parts)
- Welding (solder, electrodes)
- Energy (electrodes, fuel cells)
- Other (porous filters, sporting goods)
Example Applications

§ Automotive

§ Biomedical components

Endoscopic Surgical Tool

Needle-Biopsy-Gun components
Powders and Particles

- A powder is a collection of finely dispersed solid particles smaller than 100 μm.
- The particle size of powders used in powder metallurgy ranges from 0.1 to 100 μm.
- The size and shape of the particles depends on:
 - Materials chemistry
 - Powder production technique

![Tantalum flakes 50 μm width](image1)

![Silicon nitride Agglomerate 2 μm spheres](image2)

![Stainless Steel 20 μm spheres](image3)

![Iron irregular particles 100 μm long](image4)
Powder Characteristics

Powder characteristics relevant to powder processing are:
- Particle size and its distribution
- Particle agglomeration
- Surface area of particles
- Interparticle friction
- Particle flow and packing
- Crystal Structure of the particles
- Composition, homogeneity and contamination

These characteristics must be measured and quantified to
- Optimize powder fabrication process
- Select powder processing route
- Specify operating conditions of compacting, sintering and finishing processes.
Particle Size and Shape

- Most fabricated particles have complex shapes.
- Particles size and shape influence packing, flow and compressibility of the powder.
- Characteristic dimensions of the particle depends on the shape of the particle.
Particle Size

Several metrics are used to describe particle size. They are based on:

- Characteristic length of projected particle
 - Projected height
 - Projected width
 - Maximum cord length

- Diameter of an equivalent sphere of the same
 - Projected area (Projected equivalent diameter, D_A)
 - Surface area of actual particle (Surface equivalent diameter, D_S)
 - Volume of actual particle (Volume equivalent diameter, D_V)

\[A = \text{projected area} \]
\[S = \text{surface area} \]
\[V = \text{volume} \]

Possible size measures:

- $H =$ projected height
- $W =$ projected width
- $M =$ maximum cord length

Equivalent spherical diameters:

- $D_A = \left(\frac{4A}{\pi}\right)^{1/2}$
- $D_S = \left(\frac{S}{\pi}\right)^{1/2}$
- $D_V = \left(\frac{6V}{\pi}\right)^{1/3}$
Particle Shape

- Most common descriptors of particle shape are main particle features (see figure of particle shapes), shape factor and aspect ratio.
- The shape factor, k, is defined as the particle surface area divided by the surface area of the same volume.
 - The shape factor for a spherical particle is unity, and greater than one for other shapes.
 - It is used to calculate specific surface area S (area per unit mass m^2/kg)
 \[S = 6k / (\rho D_v) \]
- The aspect ratio is described in terms of
 - Linear dimensions of projected particle (M/W)
 - Equivalent diameters of projected particle (D_o/D_A)
Particle Size Distribution

- The variation of particle size in a powder is described by a distribution function.
- The key parameters in the distribution function are a mean particle size and a standard deviation σ^2
- These two parameters are determined from measured amounts of all particle sizes in the powder
Types of Particle Distribution

- **Gaussian (log-normal)**
 - Frequency:
 - Cumulative frequency:

- **Polydisperse (broad)**
 - Frequency:
 - Cumulative frequency:

- **Monodisperse**
 - Frequency:
 - Cumulative frequency:

- **Bimodal**
 - Frequency:
 - Cumulative frequency:
Powder Fabrication

- Powder manufacturing revolves around transforming bulk materials into finely dispersed pieces.
- Powder manufacturing techniques
 - Mechanical Commination
 - Chemical Synthesis
 - Electrolytic deposition
 - Liquid atomization
 - Vapor Condensation
- Energy efficiency (actual energy consumption/surface energy of particles) of these techniques is generally low, less than 5%.
- Selection Criteria
 - Type and properties of the material
 - Reactivity of the material
 - Desired characteristics of the produced powder
 - Rate of production and costs
Mechanical Powder Fabrication

- Powder production methods
 - Machining
 - Uses shear forces to chip bulk materials
 - Produced chips are quite large (mms in size)
 - Impaction
 - Disintegrate of bulk materials is by impact
 - It produces powders in mm size range
 - Attritioning
 - It involves grinding the material with another a harder material
 - Produce fine particles in 1 to 100 mm size range
 - Compression
 - Involves compressing the material to its breaking point
 - It is hardly used in powder fabrication

- Mechanical powder fabrication involves one or more of these techniques

- Powders produced by mechanical techniques are irregular in shape.
Machining

- Metalworking by traditional metal cutting processes such as turning on a lathe, and drilling produces large powder as a byproduct.
- It is the cheapest method for producing large quantities of powders.
- It lacks control of particle size and shape, and material structure.
- Powders produced by this method is generally not suitable for powder processing.
- They are used as the feed material for other mechanical fabrication processes.
Impaction Processes

- Milling
 - Milling refers to processes that use hard balls and rods to fracture particulate materials upon collision.
 - It is used for crushing brittle materials, such as carbides, oxides and intermetallics or embrittled metals such as saturated niobium with hydrogen.
 - The crushing system is essentially a cylindrical drum filled with balls or rods and the material and the drum rotates to produce collisions between falling balls and particles.
 - The key process parameter is rotation speed.
 - Slow rotation cause the balls to roll resulting in low impact forces.
 - Fast rotation cause the balls to stick on the wall of the drum by centrifugal forces.
Milling

It is a mechanical method for powder production, where the initial material is pulverized without any change in chemical composition. Reduction of particle size is beneficial for sintering, which depends on diffusion of atoms.

Most common milling method is ball milling
- Generally balls are used for milling. Hardness of the balls must be equal or greater than the hardness of the powder will be milled.
- Amount and size of the balls are critical for the final powder size.
- Wet or dry milling can be applied.
- From balls or barrel impurities may added to the powder (milling time and ball hardness)
Milling

These processes are **not much used as primary methods** for the production of **metal** powders. Mechanical comminution is possible by methods such as **impact, attrition, shear and compression**. The formation of metal powders by mechanical methods relies on various combinations of these four basic mechanisms. Such methods have been used as the primary process for the following cases:

– materials which are relatively **easy to fracture** such as pure antimony and bismuth, relatively **hard and brittle** metal alloys and ceramics.

– reactive materials such as **beryllium** and **metal hydrides**.

– common metals such as aluminium and iron which are required sometimes in the form of **flake powder**.
Milling

- Milling is oldest in powder metallurgy and ceramics
- Effective in brittle materials.
- Less effective in metallic materials (ductile)
- Alloys can be effectively grinded by mechanical means

Additionally, there are important mechanical disintegration process in powder metallurgy, in high-energy milling severe embrittlement of the metal may occur.
Milling

The general phenomena during size reduction in the solid state are based on fracture mechanics:

• the nucleation of cracks,
• crack propagation
• fracture, by which new surfaces are formed.

The kinetic energy within the milling aggregate is partially transformed into mechanical stresses in the material causing disintegration (break up).
Milling

The forces acting in these processes cause:

- compression
- shear stresses

applied by the milling balls during vessel rotation or by the rotating arms in an attritor. (impact)
The limit of the minimum obtainable particle size depends on:

- the condition of the mechanical process
- the material

- The smaller the particle size → necessary shear stress increases on each particle in order to achieve further particle fracture.

- Small particles exhibit higher surface activity than larger ones and therefore, have a higher probability of being re-welded.
The **efficiency** of mechanical size-reduction processes is generally **very low**.

- Only about 0.1 % of the spent energy in the conventional ball milling process is found in the **generated new surfaces** of the fine particles.
- The efficiency may be somewhat higher in high energy milling processes but is still less than 1 %.

The sources of lost energy:

- elastic and plastic deformation of the particles
- the kinetic energy of the particles in motion, impact and friction energy in the form of heat outside the powder, etc.

The main cause of lost energy, however, is the generation of heat.
Optimizing Milling Efficiency

conventional steel ball mills, size and number of milling balls → up 40-50% of the vessel volume.

size of the balls → 12 and 16 mm (about 10-20 times larger than the initial size of the particles)

other types of fine-milling equipments: planetary ball milling, centrifugal milling and attritor milling.
Optimizing Milling Efficiency

Wet Milling instead of dry milling is often advantageous because liquids tend to break up agglomerates as well as reducing re-welding of powder particles.

As milling media, hydrocarbons (hexane, heptane), ethanol and other organic liquids, which help to avoid oxidation of the milled product, are often used.
Impurities

During the milling of hard and abrasive powders the *level of impurities* sometimes rises considerably, because of severe wear loss from walls and milling media.

Rubber liners and ceramic balls which cause less contamination are sometimes advisable.

- Iron contamination can be removed by subsequent acid leaching, if the milled powder itself is acid-resistant.
Impurities

• Rubber liners and ceramic balls (Al$_2$O$_3$ or ZrO$_2$) which cause less contamination are sometimes advisable.

Cubic Zirconia has a rating of approximately 8 on Mohs hardness scale vs. a rating of 10 for diamond

Alumina has a rating of approximately 9 on Mohs hardness scale vs. a rating of 10 for diamond

• The best but most expensive solution is to use liners and balls of similar composition to that of the material being milled (e.g., the milling of special ceramic powders, like Si$_3$N$_4$)
An attritor is a ball mill system in which the balls, together with the material to be milled are set in motion by a shaft with stirring arms, rotating 100-2000rpm.

Cylindrical vessel is usually water cooled because of the considerable heat generated by the process. Dry, wet (water, inorganic liquids) milling is possible. Inert gas supply possible for reactive materials. More effective than conventional ball mill.
• Dry wet attritors ➔ inorganic pigment and paint production, hard metal industry. In these fields of application of very fine particulates are required.

• Several metals and alloys may become amorphous during extended milling. **Amorphous alloys** (glassy metals developed by this method)
Mechanical methods

Amorphization of Cobalt-rich Magnetic Alloys by High Energy Ball Milling*

HIROSHI KIMURA
Department of Mechanical Engineering, National Defense Academy, Yokosuka 239 (Japan)

FUMISATO TAKADA
Mitui Miike Engineering Corporation, Tokyo 103 (Japan)

WHANAM MYUNG†
Department of Mechanical Engineering, National Defense Academy, Yokosuka 239 (Japan)

Abstract

This article reports solid-state amorphization of binary systems of cobalt-rich Co–Zr, Co–Nb and Co–Ti alloys of more than 80 at.% Co by dry mechanical alloying, which provides a route to a development of low magnetostrictive amorphous materials in soft magnetic applications. X-ray diffractometry and differential scanning calorimetry confirm limiting compositions of Co₈₀Zr₂₀, Co₈₀Nb₁₅ and Co₈₀Ti₂₀ for amorphization under these experimental circumstances. The saturation magnetization increases with cobalt concentration, attaining a maximum of 13 400 Gauss for Co₈₀Zr₂₀. The dependence on cobalt concentration agrees with that of sputtered amorphous thin films. At the same time, the coercivity decreases from 19 Oe to 11 Oe, mainly because of an increment in the median diameter from 15 μm to 42 μm. Coercive forces for amorphous Co–Zr are smaller than the value of 25 Oe for unreacted crystalline Co₈₀Zr₂₀, 67 μm in size.

1. Introduction

Research on the synthesis of amorphous alloys has focused on solid-state amorphization by mechanical alloying [1]. A high-energy ball mill with a large grinding capability can fabricate uniform amorphous powders, avoiding a mass (size) effect resulting from different quenching rates in rapidly quenched amorphous powders, and realizing mass productivity near ambient temperature. One can then apply previous knowledge of the industrial powder production method of oxide dispersion strengthened alloys and ultrafine ceramics [2].

Solid-state amorphization is favoured in the middle concentration range of a transition metal–transition metal (TM–TM) system, where there is a high negative heat of mixing, which is thought to be one of the important parameters determining glass-forming ability in a solid-state reaction [3]. However, mechanically alloyed amorphous Fe–Zr and Co–Zr near the middle concentration range are not magnetic [1]. So far, there has been no attempt to fabricate cobalt-rich cobalt–transition metal systems by solid-state reactions for soft magnetic applications. It is known that various cobalt-rich Co–TM magnetic amorphous alloys obtained by sputtering provide good soft magnetic characteristics, such as high saturation magnetization, low coercivity and low magnetostriction. However, sputtering produces only thin amorphous films [4], and melt-spinning presents difficulties in preparing continuous amorphous ribbon and powders [5].

Here, we report on the synthesis of mechanically alloyed amorphous powders of binary systems of cobalt-rich Co–(Zr, Nb, Ti) and on their magnetic characteristics, to help develop magnetic amorphous alloys with a low magnetostriction and a relatively high saturation magnetization.

2. Experimental procedure

Powder mixtures of Co–(Zr, Nb, Ti) in the range of 95–75 at.% Co were mechanically alloyed by employing a high-energy ball mill (Mitui Miike attritor MA1D, Japan) with steel ball media of 18 kg with a revolving velocity of 300 rev min⁻¹ (ref. 6 gives details). In this investigation, we adopted an incremental...
Roller Milling

For brittle materials a new size reduction technology become important, the high-compression roller mill, which operates with profiled rollers in the pressure range 50-500 MPa.

According to the working conditions products with narrow particle size ranges, between 200 and about 5μ are achievable.
Mechanical Alloying

Mechanical alloying is a high-energy ball milling process for producing composites with a controlled, even distribution of a second phase in a metallic matrix.
Mechanical methods

- developing dispersion-strengthened alloys in which the development of special microstructures essential for achieving good high-temperature mechanical properties in multiphase powder metallurgy materials.

- the distribution of a non-metallic phase in a metallic, ductile matrix can be homogenized to a degree, which can be achieved otherwise only by chemical means.

- chemical reactions and formation of solid solutions can be obtained, in such cases the term 'reaction milling' is used.
Mechanical Alloying

![Diagram of mechanical alloying process](image)

Figure Mechanical alloying of nickel particles with dispersed smaller particles. As nickel particles are flattened between the two balls, the second smaller phase impresses into the nickel surface and eventually is dispersed throughout the particle due to successive flattening, fracture, and welding events.
The process consists of long period milling of mixtures, in which the main component (matrix) is ductile.

- the ductile phase undergoes a continuous cycle of plastic deformation, fracture and re-welding processes, by which the fine dispersoids are implanted step-by-step into the interior of the ductile phase.

- Mechanical alloying is applicable to nearly all combinations of brittle phases (oxides, carbides, nitrides, carbon, intermetallics) and ductile metallic powders, which demonstrates the possibilities for extensive composite materials development.
Chemical Methods

These methods can be further classified as chemical reduction and chemical decomposition.

Chemical Reduction

Chemical reduction involves chemical compound most frequently an oxide, but sometimes a halide or other salt of the metal. This may be carried out:

- Chemical reduction from solid state
- Chemical reduction from the gaseous state
- Chemical reduction from aqueous solution
Electrolytic Production of Powders

- This powder production route is used to produce high purity metal powders.
- Applications include:
 - Basic metals: Iron, copper, aluminum, chromium, zinc and magnesium
 - Precious metals: Niobium, tantalum and silver
 - Reactive metals: Titanium and palladium
- It involves two operations:
 - Electrodeposition of the metal in spongy or powdery state
 - Milling of the deposited metal
- Electrolytic powders are in tens of microns size range, and typically have irregular, porous and dendritic shapes with poor packing characteristics.
Electrodeposition of Metals

- **Fundamentals**
 - **Electrochemical reactions**
 - Cathode: \(A^+ + e^- = A \)
 - Anode: \(B = B^+ + e^- \)
 - Overall: \(B + A^+ = A + B^+ \)
 - **Free Energy of reactions**
 - Electrode: \(\Delta G_{\text{ele}}^0 = - nF E_{\text{ele}} \)
 \[E_{\text{ele}} = E_{\text{ele}}^0 + \frac{RT}{nF} \ln k \]
 - Overall: \(\Delta G^0 = - nF E = (E_{B}^0 - E_{A}^0) + RT \frac{a_{B^+}}{a_{A^+}} \)
 - \(E \) = cell potential; \(E_{\text{ele}} \) = electrode potential; \(k \) = Equilibrium constant
 - \(n \) = valance of ion; \(F \) = Faraday’s number (96495 C/g-equivalent)
 - **Typical standard potentials \(E_{\text{ele}}^0 \) (v)**
 - \(\text{Cu}^{2+} + 2e^- = \text{Cu} \quad E_{\text{Cu}}^0 = 0.34 \)
 - \(\text{Fe}^{2+} + 2e^- = \text{Fe} \quad E_{\text{Fe}}^0 = -0.44 \)
 - **Theoretical deposition rate, current efficiency**
 \[
 R_{A \text{ theoretical}} = \frac{I}{F} \left(\frac{MW_A}{n_A} \right) \quad \text{gm/s} \quad \text{Efficiency} = \frac{R_A}{R_{A \text{ theoretical}}} \times 100
 \]
Electrodeposition of Metals (cont.)

- **Technology**
 - Electrodeposition is in essence a refining process of impure metal ingots
 - It involves dissolution of the impure metal from the anode in an electrolyte and depositing the dissolved metal ions on the cathode.
 - Industrial electrorefining cells use a set of 20 to 40 anodes and cathodes connected in parallel to the power supply.
 - Cell tanks are 3-4 m long, 1 m wide and 1 m deep
 - The cell voltage is low, typically between 1 and 2 volts, while the current density is quite high ranging from 300 to 4000 A/m²
Electrodeposition of Metals (cont.)

- Process variables
 - Cell current and voltage
 - Cathode-anode gap thickness
 - Electrolyte concentration and temperature
 - Intensity of bath stirring

- Operating conditions favoring spongy and powdery deposits
 - High current density
 - Large cathode-anode gap
 - High bath temperature
 - Low ion concentration of the electrolyte
 - Minimal electrolyte agitation
Figure 12.13 The Ellingham diagram for selected oxides.
Chemical Methods

Chemical Reduction from the solid state (reduction of iron oxide with carbon or of tungsten oxide with hydrogen)

Sponge iron powder produced by the Höganäs process is a typical example of this production method.

The Höganäs process is based in the use of quite pure magnetite (Fe$_3$O$_4$) ores. The iron ore is reduced with a carbonaceous material.

Figure shows the steps involved in producing such powder.
1. Reduction mix of coke and limestone
2. Iron ore; 3. Drying;
4. Crushing; 5. Screening;
6. Magnetic separation
7. Charging in ceramic tubes;
8. Reduction in tunnel kilns, approximately 1200°C;
9. Discharging
10. Coarse crushing
11. Storage in silos
12. Crushing;
13. Magnetic separation
16. Equalizing
17. Automatic packing of pressing powder, welding powder and cutting powder;
18. Iron ore; 19. Reduction mix
1. The ore is ground to a particle size distribution determined by each of the desired iron powder.

2. The ore powder is placed in the centre of cylindrical ceramic containers (‘saggers’ made of silicon carbide) surrounded on the outside (and inside) by a concentric layer of a mixture of coke and limestone.

3. The saggers are placed in layers upon cars which are pushed through a fuel fired tunnel kiln.

4. The carbon monoxide produced from the coke reduces the ore to iron. Total reduction time is of the order of 24 hours at a reduction temperature of \(1200^\circ\text{C}\).

5. The limestone serves to bind any sulphur in the coke and prevents its contaminating the iron.

6. The sponge iron is mechanically removed from the saggers, ground and the resulting powder magnetically separated from impurities. In a final reduction step the powder is carried through a continuous furnace in hydrogen atmosphere on a belt made of stainless steel.

The overall reduction

\[\text{Fe}_3\text{O}_4 + 4 \text{ CO} \leftrightarrow 3\text{Fe} + 4 \text{ CO}_2 \]

Most of the powder is milled to particle size distributions suitable for powder metallurgy parts production, whilst some (particle size > 150 \(\mu\text{m}\)) is sold for the manufacture of welding electrodes.
Example 2: ‘Pyron iron powder’ is produced from mill scale by reduction with hydrogen.

Mill scale, often shortened to just scale, is the flaky surface of hot rolled steel, consisting of the iron oxides iron(II) oxide (FeO), iron(III) oxide (Fe₂O₃), and iron(II,III) oxide (Fe₃O₄, magnetite).

The mill scale is ground, magnetically separated and first roasted in air to convert the Fe₃O₄ to Fe₂O₃ (because the rate of reduction of Fe₂O₃ with hydrogen is faster than that of Fe₃O₄)

The oxide is reduced in a belt furnace at temperature near 980°C. The reduction product is ground.
Example 3: WO_3 is reduced to tungsten powder with hydrogen.

The important minerals of tungsten are wolframite (FeWO_4) and scheelite (CaWO_4), often occurring with tin ores.

- Scheelite ores are leached with HCl to form tungstic acid (H_2WO_4 or $\text{WO}_3\cdot\text{H}_2\text{O}$).
- Tungstic acid is dissolved and digested in ammonia solution (NH_3) to give rise to ammonium tungstate solution ($\text{NH}_4)_2\text{WO}_4$.
- APT (Ammonium Paratungstate, $(\text{NH}_4)_{10}(\text{H}_2\text{W}_{12}\text{O}_{42})\cdot4\text{H}_2\text{O}$) is obtained from the crystallization of ammonium tungstate solution.
- APT is then calcined to give blue oxide.
• Tungsten is leached with caustic soda (NaOH) at elevated temperature under pressure to produce sodium tungstate (Na_2WO_4) in solution.
• the solution is purified using solvent extraction
• tungsten finally precipitated as pure WO_3.

\[
4\text{WO}_3 + \text{H}_2 = \text{W}_4\text{O}_{11} + \text{H}_2\text{O}
\]

\[
\frac{1}{3}\text{W}_4\text{O}_{11} + \text{H}_2 = \frac{4}{3}\text{WO}_2 + \text{H}_2\text{O}
\]

\[
\frac{1}{2}\text{WO}_2 + \text{H}_2 = \frac{1}{2}\text{W} + \text{H}_2\text{O}
\]

• reduction from WO_2 to tungsten at 850°C,
• The reduction of WO_2 by hydrogen is catalyzed by tungsten metal.
Chemical Reduction from the gaseous state

Gaseous based fabrications fabricate powders from reactive metals and precipitate nanoscale particles. The powders are formed without melting or contact with a crucible, thereby avoiding a major source of contamination.

Obtaining Ti powders from Titanium tetrachloride vapour with molten magnesium – the well-known Kroll Process
Chemical Reduction from the gaseous state

Ilmenite (FeTiO$_3$) is the most abundant titanium-bearing mineral and is comprised of about 43% to 65% titanium dioxide (TiO$_2$). A second major mineral form of titanium is rutile, a crystalline, high-temperature polymorph of TiO$_2$, containing about 95% TiO$_2$.

The chloride process is used to separate titanium from its ores. In this process, the feedstock is chlorinated at 1000 °C with carbon and chlorine gas, giving titanium tetrachloride. Typical is the conversion starting from the ore ilmenite:

$$2 \text{FeTiO}_3 + 7 \text{Cl}_2 + 6 \text{C} \rightarrow 2 \text{TiCl}_4 + 2 \text{FeCl}_3 + 6 \text{CO}$$
Chemical Reduction from the gaseous state

In a separate reactor, the TiCl$_4$ is reduced by liquid magnesium or sodium (15–20% excess) at 800–850 °C in a stainless steel distiller to ensure complete reduction:

$$2\text{Mg}(l) + \text{TiCl}_4(g) \rightarrow 2\text{MgCl}_2(l) + \text{Ti}(s) \ (T = 800–850 \ °C)$$
Chemical Reduction from the aqueous state
(hydrometallurgical method)

Example: Copper
Low cost copper powder is produced from solution obtained by leaching (solute+filtrate) copper ores or copper scrap, where the precipitation of copper powder from an acidified solution of copper sulphate with iron is achieved.

Large quantities of this ‘cement copper’ are produced from the copper sulphate solutions which are a by-product of the copper refinery industry.

Therefore, copper sulfate is essential to reduce copper.
Chemical Reduction from the aqueous state
(hydrometallurgical method)

Example: Copper

The following competitive reactions occur in the precipitation of copper from dilute acid solutions using metallic iron as the precipitant:

\[\text{Fe (metal)} + \text{CuSO}_4 \rightarrow \text{Cu (metal)} + \text{FeSO}_4 \]

\[\text{Fe (metal)} + \text{Fe}_2(\text{SO}_4)_3 \rightarrow 3 \text{FeSO}_4 \]

\[\text{Fe (metal)} + \text{H}_2\text{SO}_4 \rightarrow \text{H}_2 + \text{FeSO}_4 \]

Example: Copper

Another way of copper recovery from copper(II) sulfate solutions by reduction with carbohydrates:

Copper(II) in copper sulfate solutions can be reduced with various carbohydrates to obtain a copper powder.

- Theoretically, the overall reaction for copper reduction with cellulose is:

$$12n \text{Cu}^{2+} + [\text{C}_6\text{H}_{10}\text{O}_5]_n + 7n \text{H}_2\text{O} \rightarrow 12n \text{Cu}^0 + 6n \text{CO}_2 + 24n \text{H}^+$$

*R.D. van der Weijden, J. Mahabir, A. Abbadi, M.A. Reuter, »Copper recovery from copper(II) sulfate solutions by reduction with carbohydrates», Hydrometallurgy Volume 64, Issue 2, May 2002, Pages 131–146
Chemical Reduction from the aqueous state (hydrometallurgical method).

Example: Nickel

The method described for the preparation of extra high purity nickel powder is based on the reduction of nickel sulfate solution by hydrogen under pressure in an autoclave.

An autoclave is a pressure chamber used to carry out industrial processes requiring elevated temperature and pressure different to ambient air pressure. (similar to pressure cooker)
Chemical Reduction from the aqueous state (hydrometallurgical method).

Example: Nickel

The methods employed for removing the traces of impurities include cementation of the copper, hydrolysis of the iron salts, and chemical precipitation of the cobalt. Unlike commercial practice of the hydrogen reduction process, the reduction of the purified nickel sulfate NiSO₄ solution is carried out without a ferrous salt catalyst.
Chemical Reduction from the aqueous state
(hydrometallurgical method).

Example: Nickel

To initiate the reduction reaction, a small amount of ammonium carbonate \((\text{NH}_4)_2\text{CO}_3\) is introduced into the system. Reduction is carried out at a temperature of 350°F (176°C) under a hydrogen pressure of 350 psi (2.4 MPa).

The ammonium carbonate presumably promotes the formation of a fine suspension of solid basic nickel carbonate, \(\text{NiCO}_3\) which then plays the role of a catalyst and provides the nuclei on which the nickel precipitates.

Chemical Reduction from the aqueous state
(hydrometallurgical method).

Example 2: Nickel

Nickel powder produced by the Sherrit Gordon process is the typical hydrometallurgy method for production in which reduction of an ammoniacal solution of nickel sulphate NiSO₄ with hydrogen under a pressure of 1.38 MPa (200 psi) and a temperature of 190–200°C in an autoclave is carried out.
Chemical Reduction from the aqueous state (hydrometallurgical method).

Example 2: Nickel

A nickel salt solution is obtained by leaching complex Cu–Ni–Co ores. Before the nickel is precipitated as metallic powder the copper is removed from the solution by precipitation as sulphide (CuS). For the precipitation of the first nickel powder nuclei from the solution, catalyst, e.g. ferrous sulphate, is used. The very fine nickel powder nuclei are allowed to settle in the autoclave, the barren solution is decanted and a new batch of solution is introduced into the autoclave.
Chemical Reduction from the aqueous state (hydrometallurgical method).

Example 2: Nickel

The nickel powder nuclei are suspended in the solution by agitation and the nickel in the solution is reduced with hydrogen at 1.38 MPa (200 psi) and precipitated on the existing nuclei. The process called densification is repeated many times, say 15–30. Finally, the powder is removed from the autoclave, washed and dried. The process permits control of the size and shape of the nickel powder being produced.
Chemical Decomposition of Compounds

Under this category of powder production two methods are very common. These are:
(i) Decomposition of metal hydrides
(ii) Decomposition of metal carbonyls

Decomposition of metal hydrides

This involves first hydriding the refractory metals like Ti, Zr, Hf, V, Th or U by heating the metal in the form of sponge, chip or turnings or even compact metal in hydrogen. TiH$_2$ is formed from titanium in the temperature range between 300–500°C. These hydrides are quite brittle and can be readily ball-milled into powder of the desired size.
Decomposition of metal carbonyls

Example iron and nickel powder production.

The carbonyls are liquids at normal temperature with a low boiling point. These are formed by reaction of the metal and carbon-monoxide gas under pressure.

For example; iron carbonyl (Fe(CO)$_5$) is formed at 70–200 atmosphere pressure and a temperature of 200–220°C. The carbonyls can now be decomposed by heating at atmospheric pressure.
Decomposition of metal carbonyls

Example iron and nickel powder production.

Care must be taken to have the decomposition take place in the gas phase and not on the surface of the reaction vessel, in order to obtain metal in the powdery form.

The usual carbonyl iron powder particles are spherical with an onion skin structure, because the iron powder ‘nuclei’ first formed catalyze the decomposition of CO into C and CO$_2$.

Chemical methods
• This type of iron powder is quite pure with respect to metallic impurities, but contains considerable amount of carbon and oxygen (fraction of a percent).

• The amount of such impurities can be reduced by adding ammonia during the decomposition of the carbonyl and by a subsequent annealing treatment.

• But these would naturally enhance the cost. Carbonyl iron powder is usually spherical in shape and very fine (<10 µm), while the nickel powder is usually quite irregular, porous and fine.