
Plasticity and 
Deformation Process

Strain calculations in plastic deformation



Solution of Plastic Deformation Problems

We combine the yield criterion, the stress-strain relations, and the material model to solve for the deformations 
in a plastic deformation process utilizing proportional loading

Recall that the generally applicable yield criterion for plastic materials is von Mises’:
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The multiaxial stress state should be translated into the effective stress and compared with the yield strength of 
the material to find the plastic deformation and the dynamic material properties that are dependent on the 
plastic strains

𝐸𝑠𝑒𝑐 =
𝜎𝑒𝑓𝑓
𝜀𝑒𝑓𝑓

𝜈 =
1

2
−
𝐸𝑠𝑒𝑐
𝐸

1

2
− 𝜈𝑒

𝐺𝑝 =
𝐸𝑠𝑒𝑐

2(1 + 𝜈)



Procedure to obtain the secant modulus form a best fit curve representing the uniaxial stress-strain curve:
Basically the curve should be considered as a set of points each of which is a stress and corresponding strain.

• Calculate value of 𝜎𝑒𝑓𝑓 corresponding to the given multiaxial stress state

• Determine 𝐸𝑠𝑒𝑐 analytically by interpolation of the stress values from a table of stress-strain data pairs or 
from the best fit curve equation.

• Use  𝐸𝑠𝑒𝑐 and the variable 𝜈 in the stress-strain relations to calculate the strains for the specified 𝜎𝑒𝑓𝑓
• The strains 𝜀𝑥, 𝜀𝑦, 𝜀𝑧, 𝛾𝑥𝑦 , 𝛾𝑦𝑧, 𝛾𝑧𝑥 that are given below are the answers we are looking for, not 𝜀𝑒𝑓𝑓 that can 

be obtained directly from the curve. 
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𝜎𝑦 − 𝜈 𝜎𝑥 + 𝜎𝑧
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Material Model Equations

Material model equations enable analytic calculation of the secant modulus using a best fit curve to the uniaxial 
stress-strain diagram

There are five model equations to represent the stress-strain curves of common strain-hardening materials:
1. Linear strain hardening
2. Power-law
3. Ramberg-Osgood
4. Nadai
5. Nadai-Jones

These models cover more than one class of strain-hardening materials in addition to the non-strain hardening 
elastic-perfectly plastic and rigid-perfectly plastic curves.

The least number of parameters to describe elastic-perfectly plastic stress-strain behavior is 2: E and 𝜎𝑦

At least three parameters will be needed to approximate non-linear stress-strain behavior using these models.



1. Linear strain-hardening model is the simplest of all non-linear stress-strain curve models. It consists of two 
straight lines with different moduli:

𝜎 = 𝐸𝜀 𝜀 ≤ 𝜀𝑦
𝜎 = 𝜎1 + 𝐸1𝜀 𝜀 > 𝜀𝑦

It becomes the elastic-perfectly plastic model when 𝐸1 = 0 and 𝜎1 = 𝜎𝑦, 

and the linear elastic model when 𝐸1 = 𝐸 and 𝜎1 = 0

Three parameters are necessary to determine the strains as functions of stress:  𝐸 , 𝐸1, 𝜎𝑦

The elastic and the first moduli are determined graphically from the secant modulus:

𝐸𝑠𝑒𝑐 = 𝐸 𝜎 ≤ 𝜎𝑦
𝐸𝑠𝑒𝑐 =

𝜎1

𝜀
+ 𝐸1 𝜎 ≥ 𝜎𝑦

The stress at yielding is written by the use of the equation of a straight line y=mx+b:

𝜎𝑦 = 𝜎1 + 𝐸1𝜀𝑦

The stress-strain behavior of many materials can be represented roughly with this model.



Philip’s model is a mathematical extension of the linear strain-hardening model which consists of multiple straight 
line segments.

𝐸𝑠𝑒𝑐 = 𝐸 𝜎 ≤ 𝜎𝑦
𝐸𝑠𝑒𝑐 =

𝜎1

𝜀
+ 𝐸1 𝜎 ≥ 𝜎𝑦

𝐸𝑠𝑒𝑐 =
𝜎1

𝜀
+ 𝐸2 𝜎 ≥ 𝜎𝑚

…

The more line segments that exist, the better the measured stress-strain behavior can be modeled.
However the mathematical difficulty increases with the addition of each line segment as more parameters are 
introduced in the model equation.



2. Power-law model

The general form of power-law stress-strain curve model has the following equation

𝜎 = 𝐴𝜀𝑛

n is the strain hardening coefficient, A is the constant which are adjusted to best fit measured stress-strain data.

The value of n should be in the range 0-1 in order to model concave-downward behavior. 

The stress-strain curve has an infinite slop at the origin and the equation is not good for low stress levels.
Instead the following form is used  to account for elastic deformations:

𝜎 = 𝐸𝜀 𝜎 ≤ 𝜎𝑦

𝜎 = 𝐴𝜀𝑛 𝜎 ≥ 𝜎𝑦



An alternative form is 
𝜎 = 𝐸𝜀 − 𝐴𝜀𝑛

Only three stress-strain curve parameters are needed for this equation: E, A, n

It is valid until the maximum stress-strain point corresponding to 𝜀𝐿

𝜀𝐿 =
𝐸

𝐴𝑛

1
𝑛−1

Power-law model is used extensively because of its mathematical simplicity, however only certain types of stress-
strain behavior can be modeled with it.



3. Ramberg-Osgood Model

The general form of Ramberg-Osgood  stress-strain curve equation is

𝜀 =
𝜎

𝐸
+ 𝐾

𝜎

𝐻

𝑛

The first part in the right hand side is the elastic strain and the second is the plastic strain

K is a constant depending on the plastic modulus H and n

n is the inverse of strain hardening coefficient and it is found from two data points from the non-linear part of the 
stress-strain diagram:

1

𝑛
=
log  𝜎2 𝜎1
log  𝜀2 𝜀1

H, the plastic modulus is obtained again from a stress-strain relationship at the non-linear part:

𝐻 =
𝜎1

𝜀1
 1 𝑛

The equation becomes the following form when we take the off-set yield point as our data point

𝜀 =
𝜎

𝐸
+ 0.002

𝜎

𝜎𝑦

𝑛

n can also be determined by iteration during curve-ftting



𝜀 =
𝜎

𝐸
1 + 0.002

𝜎

𝜎𝑦

𝑛−1

Three parameters are needed to determine the Ramberg-Osgood stress-strain curve: E, 𝜎𝑦 and n

The model equation is continuously curved, there is no definitive elastic region followed by a yield stress.
It approaches elastic-perfectly plastic behavior as n gets larger



4. Nadai Model

The behavior of elastic-plastic materials like aluminum and its alloys are represented well with a linear elastic 
region ended by a well defined yield stress and a gradual bending over of the concave downward stress-strain 
curve.
Nadai model equation represents this behavior:

𝜀 =
𝜎

𝐸
𝜎 ≤ 𝜎𝑦

𝜀 =
𝜎

𝐸
+ 𝐾 𝜎 − 𝜎𝑦

𝑛
𝜎 ≥ 𝜎𝑦

Where K is constant dependent on the fitting parameter n, the off-set yield strain 𝜀𝑜𝑦 = 0.002, and the stress at 

the off-set yield point:

𝐾 = 𝜀𝑜𝑦
𝑝 𝜎 − 𝜎𝑜𝑦

−𝑛

The off-set yield strain at 0.002 is determined from the permanent strain 
for materials like steel and aluminum where the behavior deviates from elasticity.

𝜀 =
𝜎

𝐸
+ 𝜀𝑜𝑦

𝑝
𝜎 − 𝜎𝑦

𝜎 − 𝜎𝑜𝑦

𝑛

Nadai model needs four parameters above the yield stress: E, 𝜎𝑦, 𝜎𝑜𝑦, n

The model equation is similar to the Ramberg-Osgood equation



5. Nadai-Jones Model

The concept of Nadai stress-strain curve model is extended to cover plastic materials with two distinctly different 
regions of nonlinear behavior. Nadai-Jones equation is the same until an upper stress where a second highly 
nonlinear region is reached:

𝜀 =
𝜎

𝐸
𝜎 ≤ 𝜎𝑦

𝜀 =
𝜎

𝐸
+ 𝐾 𝜎 − 𝜎𝑦

𝑛
𝜎2 ≥ 𝜎 ≥ 𝜎𝑦

𝜀 =
𝜎

𝐸
+ 𝐾 𝜎 − 𝜎𝑦

𝑛
+ 𝐽 𝜎 − 𝜎2

𝑚 𝜎3 ≥ 𝜎 ≥ 𝜎2

Where K and J are constants that depend on upper stresses 𝜎2 and 𝜎3 ,the corresponding plastic strains 𝜀2
𝑝 and 

𝜀3
𝑝and the curve fitting constants n and m

𝐾 = 𝜀2
𝑝 𝜎2 − 𝜎𝑦

−𝑛

𝐽 = 𝜀3
𝑝 𝜎3 − 𝜎𝑦

−𝑛



Example - Analyze the uniaxial deformation of an aluminum alloy using different models and determine the 
strains when it is loaded in plane stress condition with normal stresses in the x and y direction of 70 MPa and 40 
MPa, and with shearing stress of 30 MPa



Example – Nickel deforms plastically above a yield strength of 185 MPa. Its E=207 GPa and 𝜈 = 0.31. The 
deformation of the material can be represented by power law model with A= 700, n=0.4.
Obtain the secant modulus using the power law model for an effective stress of 500 MPa.

𝜎=𝐴𝜀ⁿ 
𝐸𝑠𝑒𝑐=(𝜎𝑦+𝐴𝜀ⁿ)/ 𝜀𝑇

𝜀𝑇 =
𝑛 𝜎𝑒𝑓𝑓 − 𝜎𝑦

𝐴
+ 𝜀𝑦



Case Study - Consider an aluminum sheet with sides 1 meter long and that is negligibly thin in the z direction so 
that plane stress condition is valid

The loads applied to the material are tensile stress in the x direction and a shear stress, tensile stresses in both 
axes and shear in the plane.

Let’s apply the deformation theory and use three material models linear hardening, power law, ramberg-osgood
models, to find the strains in each case

Linear hardening equations 𝜎 = 𝜎1 + 𝐸1𝜀 𝐸𝑠𝑒𝑐 =
𝜎1

𝜀
+ 𝐸1 𝜀 > 𝜀𝑦

𝜎𝑦 = 𝜎1 + 𝐸1𝜀𝑦

Power law equations 𝜎 = 𝐴𝜀𝑛 𝐸𝑠𝑒𝑐 =
𝜎𝑦+𝐴𝜀

𝑛

𝜀𝑇
𝜎 ≥ 𝜎𝑦

𝜀𝑇 =
𝑛 𝜎𝑒𝑓𝑓 − 𝜎𝑦

𝐴
+ 𝜀𝑦

Ramberg-Osgood equation𝜀 =
𝜎

𝐸
1 + 0.002

𝜎

𝜎𝑦

𝑛−1
1

𝐸𝑠𝑒𝑐
=

1

𝐸
1 +

0.3

0.7

𝜎

𝜎0.7

𝑛−1

for aluminum



Most deformation processes involving thin plates of material are approximated to the plane stress conditions

Plane stress is a state of stress in which the normal stress 𝜎𝑧, and the shear stresses 𝜎𝑥𝑧, 𝜎𝑦𝑧 directed 

perpendicular to the x-y plane are assumed to be zero

The geometry of the body is that of a plate with one dimension much smaller than the others. The loads are 
applied uniformly over the thickness of the plate and act in the plane of the plate as shown.

The plane stress condition is the simplest form of behavior for continuum structures and represents situations 
frequently encountered in practice



The effective stress resulting from loading of the material is calculated as 

𝜎𝑒𝑓𝑓 =
2

2
𝜎𝑥 − 𝜎𝑦

2
+ 𝜎𝑦 − 𝜎𝑧

2
+ 𝜎𝑧 − 𝜎𝑥

2 + 6 𝜏𝑦𝑧
2 + 𝜏𝑧𝑥

2 + 𝜏𝑥𝑦
2

For plane stress condition

𝜎𝑒𝑓𝑓 =
2

2
𝜎𝑥 − 𝜎𝑦

2
+ 𝜎𝑦

2
+ −𝜎𝑥

2 + 6 𝜏𝑥𝑦
2

The secant modulus will be obtained from the material model equations and the corresponding poisson’s ratio 
and shear modulus will be calculated using 

𝜈 =
1

2
−
𝐸𝑠𝑒𝑐
𝐸

1

2
− 𝜈𝑒

𝐺𝑝 =
𝐸𝑠𝑒𝑐

2(1 + 𝜈)



Loading state on the aluminum sheet is 𝐹𝑥 = 70000 𝑘𝑁, 𝐹𝑦 = 0 𝑘𝑁, 𝐹𝑥𝑦 = 40000 𝑘𝑁

The effective stress

𝜎𝑒𝑓𝑓 =
2

2
70 − 0 2 + 0 2 + 70 2 + 6 402 = 98.5 𝑀𝑃𝑎

Substitute the effective stress into the material model equation

𝐸𝑠𝑒𝑐 =
𝜎1

𝜀
+ 𝐸1 𝜎𝑦 = 𝜎1 + 𝐸1𝜀𝑦 𝜀 > 𝜀𝑦

𝜎1 = 30 − 5000 ∗ 0.00043 = 27.85 MPa

𝜀 =
98.5 − 27.85

5000
= 0.0141

The secant modulus, plastic shear modulus and the poisons ratio become

𝐸𝑠𝑒𝑐 =
27.85

0.0141
+ 5000 = 6971 MPa

𝜈 =
1

2
−

6971

70000

1

2
− 0.35 = 0.485

𝐺𝑝 =
6971

2(1+0.485)
= 2347 MPa

The strains are accordingly calculated as 

𝜀𝑥 =
1

6971
70 − 0.485 0 + 0 = 0.01

𝜀𝑦 =
1

6971
0 − 0.485 70 + 0 = −0.00487

𝜀𝑧 =
1

6971
0 − 0.485 70 + 0 = −0.00487

𝛾𝑥𝑦 =
40

2347
= 0.017



For the power law material model the secant modulus is obtained as 

𝐸𝑠𝑒𝑐 =
30+500𝜀0.5

0.01919
= 5173 MPa 𝜎 ≥ 30 Mpa

𝜀 =
0.5 98.5 − 30

500
+ 0.00043 = 0.01919

The shear modulus and the poisson’s ratio become

𝜈 =
1

2
−

5173

70000

1

2
− 0.35 = 0.474

𝐺𝑝 =
5173

2(1 + 0.474)
= 1754.75

The strains are accordingly calculated as 

𝜀𝑥 =
1

5173
70 − 0.474 0 + 0 = 0.0135

𝜀𝑦 =
1

5173
0 − 0.474 70 + 0 = −0.0066

𝜀𝑧 =
1

5173
0 − 0.474 70 + 0 = −0.0066

𝛾𝑥𝑦 =
40

1754.75
= 0.023



For the Ramberg-Osgood model the secant modulus becomes

1

𝐸𝑠𝑒𝑐
=

1

70000
1 +

0.3

0.7

98.5

40

5−1
, 𝐸𝑠𝑒𝑐 = 4178.7

𝜈 =
1

2
−
4179

𝐸

1

2
− 0.35 = 0.491

The shear modulus and the poisons ratio become

𝐺𝑝 =
4179

2(1 + 0.491)
= 1401

The strains are accordingly calculated as 

𝜀𝑥 =
1

4179
70 − 0.491 20 + 0 = 0.01675

𝜀𝑦 =
1

4179
20 − 0.491 70 + 0 = −0.00823

𝜀𝑧 =
1

4179
0 − 0.491 70 + 20 = −0.00823

𝛾𝑥𝑦 =
40

1401
= 0.0286

Comparing the results for the three models:
𝜀𝑥 𝜀𝑦 𝜀𝑧 𝛾𝑥𝑦

Linear hardening strains 0.01 -0.00487 -0.00487 0.017
Power law 0.0135 -0.0066 -0.0066 0.023
Ramberg-Osgood 0.01675 -0.00823 -0.00823 0.0286



When the loading state on the aluminum sheet is 𝐹𝑥 = 70000 𝑘𝑁, 𝐹𝑦 = 20000 𝑘𝑁, 𝐹𝑥𝑦 = 40000 kN

The effective stress

𝜎𝑒𝑓𝑓 =
2

2
70 − 𝜎𝑦

2
+ 20 2 + 70 2 + 6 402 = 93.27 𝑀𝑃𝑎

Substitute the effective stress into the material model equation

𝐸𝑠𝑒𝑐 =
𝜎1

𝜀
+ 𝐸1 𝜎𝑦 = 𝜎1 + 𝐸1𝜀𝑦 𝜀 > 𝜀𝑦

𝜎1 = 30 − 5000 ∗ 0.00043 = 27.85 MPa

𝜀 =
93.27 − 27.85

5000
= 0.0131

The secant modulus, plastic shear modulus and the poisons ratio become

𝐸𝑠𝑒𝑐 =
27.85

0.0131
+ 5000 = 7128 MPa

𝜈 =
1

2
−

7128

70000

1

2
− 0.35 = 0.4847

𝐺𝑝 =
7128

2(1+0.4847)
= 2400 MPa

The strains are accordingly calculated as 

𝜀𝑥 =
1

7128
70 − 0.4847 20 + 0 = 0.00846

𝜀𝑦 =
1

7128
20 − 0.4847 70 + 0 = −0.00195

𝜀𝑧 =
1

7128
0 − 0.4847 70 + 20 = −0.00612

𝛾𝑥𝑦 =
40

2400
= 0.0167



For the power law material model the secant modulus is obtained as 

𝐸𝑠𝑒𝑐 =
30+500𝜀0.5

0.01644
= 4904 MPa 𝜎 ≥ 30 MPa

𝜀 =
0.5 93.274 − 30

500
+ 0.00043 = 0.01644

The shear modulus and the poisons ratio become

𝜈 =
1

2
−

4904

70000

1

2
− 0.35 = 0.4895

𝐺𝑝 =
5173

2(1+0.474)
= 1662 MPa

The strains are accordingly calculated as 

𝜀𝑥 =
1

4904
70 − 0.4755 20 + 0 = 0.0123

𝜀𝑦 =
1

4904
20 − 0.4755 70 + 0 = −0.0027

𝜀𝑧 =
1

4904
0 − 0.4755 70 + 20 = −0.0087

𝛾𝑥𝑦 =
40

1662
= 0.02407



For the Ramberg-Osgood model the secant modulus becomes

1

𝐸𝑠𝑒𝑐
=

1

70000
1 +

0.3

0.7

93.274

40

5−1
, 𝐸𝑠𝑒𝑐 = 5120

𝜈 =
1

2
−
5120

𝐸

1

2
− 0.35 = 0.489

The shear modulus and the poisons ratio become

𝐺𝑝 =
5120

2(1 + 0.489)
= 1719

The strains are accordingly calculated as 

𝜀𝑥 =
1

5120
70 − 0.489 20 + 0 = 0.01176

𝜀𝑦 =
1

5120
20 − 0.489 70 + 0 = −0.00278

𝜀𝑧 =
1

5120
0 − 0.489 70 + 20 = −0.0086

𝛾𝑥𝑦 =
40

1719
= 0.0233

Comparing the results for the three models:
𝜀𝑥 𝜀𝑦 𝜀𝑧 𝛾𝑥𝑦

Linear hardening strains 0.00846 -0.00195 -0.00612 0.0167
Power law 0.0123 -0.0027 -0.0087 0.023
Ramberg-Osgood 0.01176 -0.00278 0.0086 0.0233



Consider a multiaxial stress state on the same material with all 6 normal and shear stresses
𝜎𝑥 = 70 𝑀𝑃𝑎, 𝜎𝑦 = 30 𝑀𝑃𝑎, 𝜎𝑧 = 50 𝑀𝑃𝑎, 𝜏𝑥𝑦 = 40 𝑀𝑃𝑎, 𝜏𝑦𝑧 = 30 𝑀𝑃𝑎 𝜏𝑧𝑥 = 10 𝑀𝑃𝑎

All normal forces are tensile 

The effective stress

𝜎𝑒𝑓𝑓 =
2

2
70 − 30 2 + 30 − 50 2 + 50 − 70 2 + 6 402 + 302 + 102 = 94.87 𝑀𝑃𝑎

Substitute the effective stress into the material model equation

𝐸𝑠𝑒𝑐 =
𝜎1

𝜀
+ 𝐸1 𝜎𝑦 = 𝜎1 + 𝐸1𝜀𝑦 𝜀 > 𝜀𝑦

𝜎1 = 30 − 5000 ∗ 0.00043 = 27.85 MPa

𝜀 =
94.87 − 27.85

5000
= 0.0134

The secant modulus, plastic shear modulus and the poisons ratio become

𝐸𝑠𝑒𝑐 =
27.85

0.0134
+ 5000 = 7078 MPa

𝜈 =
1

2
−

7078

70000

1

2
− 0.35 = 0.4848

𝐺𝑝 =
7078

2(1+0.4848)
= 2383 MPa

The strains are accordingly calculated as 

𝜀𝑥 =
1

7078
70 − 0.4848 30 + 50 = 0.0044

𝜀𝑦 =
1

7078
30 − 0.4848 70 + 50 = −0.004

𝜀𝑧 =
1

7078
50 − 0.4848 70 + 30 = 0.000214

𝛾𝑥𝑦 =
40

2383
= 0.0168 𝛾𝑦𝑧 =

30

2383
= 0.0126 𝛾𝑧𝑥 =

10

2383
= 0.0042



For the power law material model the secant modulus is obtained as 

𝐸𝑠𝑒𝑐 =
30+500𝜀0.5

0.0177
= 4986.4 MPa 𝜎 ≥ 30 MPa

𝜀 =
0.5 94.87 − 30

500
+ 0.00043 = 0.01726

The shear modulus and the poisons ratio become

𝜈 =
1

2
−
4986.4

70000

1

2
− 0.35 = 0.4893

𝐺𝑝 =
4986.4

2(1+0.489)
= 1674 Mpa

The strains are accordingly calculated as 

𝜀𝑥 =
1

4986
70 − 0.489 30 + 50 = 0.00619

𝜀𝑦 =
1

4986
30 − 0.489 70 + 50 = −0.00576

𝜀𝑧 =
1

4986
50 − 0.489 70 + 30 = −0.00021

𝛾𝑥𝑦 =
40

1674
= 0.0239

𝛾𝑦𝑧 =
30

1674
= 0.0179

𝛾𝑧𝑥 =
10

1674
= 0.006



For the Ramberg-Osgood model the secant modulus becomes
1

𝐸𝑠𝑒𝑐
=

1

70000
1 +

0.3

0.7

94.7

40

5−1
, 𝐸𝑠𝑒𝑐 = 4807.6

The shear modulus and the poisons ratio become

𝐺𝑝 =
4808

2(1 + 0.49)
= 1619

𝜈 =
1

2
−

4808

70000

1

2
− 0.35 = 0.49

The strains are accordingly calculated as 

𝜀𝑥 =
1

4808
70 − 0.49 30 − 50 = 0.0064

𝜀𝑦 =
1

4808
30 − 0.49 70 − 50 = −0.006

𝜀𝑧 =
1

4808
50 − 0.49 70 − 50 = 0.00021

𝛾𝑥𝑦 =
40

1619
= 0.0247

𝛾𝑦𝑧 =
30

1619
= 0.0185

𝛾𝑧𝑥 =
10

1619
= 0.0062

Comparing the results for the three models:
𝜀𝑥 𝛾𝑥𝑦 𝜀𝑦 𝛾𝑦𝑧 𝜀𝑧 𝛾𝑧𝑥

Linear hardening strains 0.0044 -0.004 0.0002
0.0168 0.0126 0.0042

Power law 0.0062 -0.0058 -0.0002
0.024 0.018 0.006

Ramberg-Osgood 0.0064 -0.006 0.00021
0.0247 0.0185 0.0062



For the case of tensile and compressive normal stresses the deformations change
𝜎𝑥 = 20 𝑀𝑃𝑎, 𝜎𝑦 = −30 𝑀𝑃𝑎, 𝜎𝑧 = −10 𝑀𝑃𝑎, 𝜏𝑥𝑦 = 40 𝑀𝑃𝑎 𝜏𝑦𝑧 = 30 𝑀𝑃𝑎 𝜏𝑧𝑥 = 10 𝑀𝑃𝑎

The effective stress

𝜎𝑒𝑓𝑓 =
2

2
20 − −30 2 + −30 − −10 2 + −10 − 20 2 + 6 402 + 302 + 102 = 98.5 𝑀𝑃𝑎

Substitute the effective stress into the material model equation

𝐸𝑠𝑒𝑐 =
𝜎1

𝜀
+ 𝐸1 𝜎𝑦 = 𝜎1 + 𝐸1𝜀𝑦 𝜀 > 𝜀𝑦

𝜎1 = 30 − 5000 ∗ 0.00043 = 27.85 MPa

𝜀 =
98.5 − 27.85

5000
= 0.01413

The secant modulus, plastic shear modulus and the poisons ratio become

𝐸𝑠𝑒𝑐 =
27.85

0.01413
+ 5000 = 6971 MPa

𝜈 =
1

2
−

6971

70000

1

2
− 0.35 = 0.485

𝐺𝑝 =
6971

2(1+0.485)
= 2347 Mpa

The strains are accordingly calculated as 

𝜀𝑥 =
1

6971
20 − 0.485 −30 − 10 = 0.0057

𝜀𝑦 =
1

6971
−30 − 0.485 20 − 10 = −0.005

𝜀𝑧 =
1

6971
−10 − 0.485 20 − 30 = −0.00074

𝛾𝑥𝑦 =
40

2347
= 0.017 𝛾𝑦𝑧 =

30

2347
= 0.0128 𝛾𝑧𝑥 =

10

2347
= 0.00426



For the power law material model the secant modulus is obtained as 

𝐸𝑠𝑒𝑐 =
30+500𝜀0.5

0.0196
= 5172.8 MPa 𝜎 ≥ 30 MPa

𝜀 =
0.5 98.5 − 30

500
+ 0.00043 = 0.0192

The shear modulus and the poisons ratio become

𝜈 =
1

2
−

5173

70000

1

2
− 0.35 = 0.489

𝐺𝑝 =
4986.4

2(1+0.489)
= 1737 MPa

The strains are accordingly calculated as 

𝜀𝑥 =
1

5173
20 − 0.489 −30 − 10 = 0.007647

𝜀𝑦 =
1

5173
−30 − 0.489 20 − 10 = −0.00674

𝜀𝑧 =
1

5173
−10 − 0.489 20 − 30 = −0.001

𝛾𝑥𝑦 =
40

1737
= 0.023

𝛾𝑦𝑧 =
30

1737
= 0.0173

𝛾𝑧𝑥 =
10

1737
= 0.0058



For the Ramberg-Osgood model the secant modulus becomes
1

𝐸𝑠𝑒𝑐
=

1

70000
1 +

0.3

0.7

98.5

40

5−1
, 𝐸𝑠𝑒𝑐 = 4178.7

𝜈 =
1

2
−

4179

70000

1

2
− 0.35 = 0.491

The shear modulus and the poisons ratio become

𝐺𝑝 =
4179

2(1 + 0.491)
= 1407

The strains are accordingly calculated as 

𝜀𝑥 =
1

4179
20 − 0.491 −30 − 10 = 0.0095

𝜀𝑦 =
1

4179
−30 − 0.491 20 − 10 = −0.0084

𝜀𝑧 =
1

4179
−10 − 0.491 20 − 30 = −0.00122

𝛾𝑥𝑦 =
40

1407
= 0.0284 𝛾𝑦𝑧 =

30

1407
= 0.0213 𝛾𝑧𝑥 =

10

1407
= 0.0071

𝜀𝑥 𝛾𝑥𝑦 𝜀𝑦 𝛾𝑦𝑧 𝜀𝑧 𝛾𝑧𝑥
Linear hardening strains 0.0057 -0.005 -0.00074

0.017 0.0128 0.00426
Power law 0.00765 -0.0067 -0.001

0.023 0.0173 0.0058
Ramberg-Osgood 0.0095 -0.0084 -0.0012

0.0284 0.0213 0.0071



Overall comparison
Stress state 𝐹𝑥 = 70000 𝑘𝑁, 𝜎𝑦 = 0 𝑘𝑁, 𝜏𝑥𝑦 = 40000 𝑘𝑁

𝜀𝑥 𝜀𝑦 𝜀𝑧 𝛾𝑥𝑦
Linear hardening strains 0.01 -0.00487 -0.00487 0.017
Power law 0.0135 -0.0066 -0.0066 0.023
Ramberg-Osgood 0.01675 -0.00823 -0.00823 0.0286
𝐹𝑥 = 70000 𝑘𝑁, 𝐹𝑦 = 20000 𝑘𝑁, 𝐹𝑥𝑦 = 40000 kN

𝜀𝑥 𝜀𝑦 𝜀𝑧 𝛾𝑥𝑦
Linear hardening strains 0.00846 -0.00195 -0.00612 0.0167
Power law 0.0123 -0.0027 -0.0087 0.023
Ramberg-Osgood 0.01176 -0.00278 0.0086 0.0233

𝜎𝑥 = 70 𝑀𝑃𝑎, 𝜎𝑦 = 30 𝑀𝑃𝑎, 𝜎𝑧 = 50 𝑀𝑃𝑎, 𝜏𝑥𝑦 = 40 𝑀𝑃𝑎, 𝜏𝑦𝑧 = 30 𝑀𝑃𝑎 𝜏𝑧𝑥 = 10 𝑀𝑃𝑎

𝜀𝑥 𝛾𝑥𝑦 𝜀𝑦 𝛾𝑦𝑧 𝜀𝑧 𝛾𝑧𝑥
Linear hardening strains 0.0044 -0.004 0.0002

0.0168 0.0126 0.0042
Power law 0.0062 -0.0058 -0.0002

0.024 0.018 0.006
Ramberg-Osgood 0.0064 -0.006 0.00021

0.0247 0.0185 0.0062
𝜎𝑥 = 20 𝑀𝑃𝑎, 𝜎𝑦 = −30 𝑀𝑃𝑎, 𝜎𝑧 = −10 𝑀𝑃𝑎, 𝜏𝑥𝑦 = 40 𝑀𝑃𝑎 𝜏𝑦𝑧 = 30 𝑀𝑃𝑎 𝜏𝑧𝑥 = 10 𝑀𝑃𝑎

𝜀𝑥 𝛾𝑥𝑦 𝜀𝑦 𝛾𝑦𝑧 𝜀𝑧 𝛾𝑧𝑥
Linear hardening strains 0.0057 -0.005 -0.00074

0.017 0.0128 0.00426
Power law 0.00765 -0.0067 -0.001

0.023 0.0173 0.0058
Ramberg-Osgood 0.0095 -0.0084 -0.0012

0.0284 0.0213 0.0071



Exercise Question

An aluminum rectangular prism, with sides 60x80x100 cm long and that are oriented parallel to the 
the x, y, z axes, is subjected to normal forces in three dimensions with Fx= 80000 kN, Fy=  -12000 
kN, Fz=  -24000 kN. The material undergoes plastic deformation as its yield strength is 30 MPa and 
E= 70GPa, ν= 0.35. The stress-strain curve of aluminum is approximated by the power law model 
with the equation 𝜎 = 500 ∗ 𝜀0.5


