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The aim of Plasticity and Deformation Process course is to develop a clear understanding of the 
macroscopic behavior of materials subjected to a deformation process, the underlying 
microstructural mechanisms and the effects of various physical and chemical process parameters 
on the response of the material.

We need to examine materials from two points of view for this aim:

1. Chemical physics, where the focus is on the molecular interactions that result in the observed 
mechanical behavior

2. Engineering view, where the molecular nature of matter is ignored and the laws of elasticity, 
plasticity, viscoelasticity and viscoplasticity are used to explain the observed mechanical 
behavior

By these approaches we can find solutions to the following questions:
 How much will a material deform under a given load?
 Is the deformation permanent or will the material return to its original shape after the load is 

removed?
 How big a load can the material carry before it breaks?
 How does the material behave under impact, as opposed to static loads?



We will apply the plasticity theory to industrial deformation processes for metals and polymers



Remembering the basic definitions

Load – force applied uniformly on an object, unit: Newton or kg-force

Deformation – the response of the object to the applied load by changing its shape and size, unit: m

Stress – force applied on unit area of an object, or pressure, unit: Newton/m2 or pascal

Strain – the ratio of the change in size of the material to the initial size, no unit

Mechanical energy – stress applied through a volume of an object, unit: Newton*m or Joule

Would you expect a steel rod with a diameter of 1 cm to carry more load than a steel rod with a 
diameter of 1 mm?

Would you expect a steel rod with a length of 1 m to deform more under a constant load than a 
steel rod with a length of 10 cm?

Now consider a rubber fiber with the same dimensions as the steel rod (diameter= 1 cm, L= 1m)
Would it carry more load?
Would it deform more under the same load?



In order to compare the mechanical properties of different materials, we must take out the effect of 
shape and size

Stress and strain are the properties that help us distinguish between the intrinsic properties of a 
material and those that are functions of its shape and size

Hooke was the first one to notice that the extension of a material is apparently proportional
to the load applied to it
e.g. a steel wire stretches 1 cm under a load of 100 Newtons while it stretches 2cm under 
200 Newtons

Young formulized the findings of Hooke in the form: 

This theory which is the basis of elasticity is only an approximation that is valid for 
small deflections

The deformation of the steel rod is not only proportional to the load, but depends also on the 
intrinsic mechanical property E of the steel rod

𝜎 =
𝐹

𝐴
𝜀 =
∆𝑙

𝑙0

𝑆𝑡𝑟𝑒𝑠𝑠

𝑆𝑡𝑟𝑎𝑖𝑛
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝐸



In the physically stressful environment there are three ways in which a material can respond to 
external forces:

• It can add the load directly onto the forces that hold the constituent atoms or molecules 
together (the main mechanism in crystalline ceramics: enthalpic elastic response)

• It can feed the energy into large changes in shape  (the main mechanism in non-crystalline 
polymers: entropic elastic response)

• It can flow away from the force to deform either semi-permanently (as with viscoelastic 
materials) or permanently (as with plastic materials)



Elastic (Hookean) Materials

In a material at equilibrium, in the unloaded state, the distance 
between adjacent atoms is 0.1 to 0.2 nm. 

At this interatomic distance the forces of repulsion between two 
adjacent atoms balance the forces of attraction

When the material is stretched or compressed, the atoms are forced 
out of their equilibrium positions 

They are either parted or brought together until the forces generated 
between them, either of attraction or repulsion, respectively, balance 
the external force

With most stiff materials the extension or compression is limited by 
other factors to less than 10% of the bond length



When the load is removed, the interatomic forces restore the atoms to their original equilibrium 
positions

A crystal consists of a large number of atoms held together by regular bonds. 

The behavior of the entire crystal in response to the force is the summed responses of the 
individual bonds. 

Hooke described this phenomenon as: 
“ut tensio, sic vis” or “as the extension, so the force” 

In other words for perfectly elastic materials the extension and force are directly and simply 
proportional to each other, and this relationship is a direct outcome of the behavior of the 
interatomic bond



The characteristic of Hookean materials is that they are perfectly elastic

They can be deformed within the elastic limit and will return to their original shape almost 
immediately after the force is removed (almost immediately because the stress wave travels 
through the material at the speed of sound in that material)

When we measure the response of the crystal to a stress, what is actually measured is the increase 
in length of the whole sample. We assume that the material is homogeneous and  one part will 
deform as much as the whole to obtain the general relation between the stress and the strain of 
the material:

𝜎 = 𝐸𝜀 Hooke’s law

Young’s modulus is a measure of stiffness in simple extension or compression

There are other types of deformation that have different effects on the interatomic forces and 
therefore different effects on the size and shape of the material

Shear stress 𝜏 = 𝐺𝛾

Hydrostatic stress 𝜎h= −𝑘𝑒



Energy of deformation

When an elastic material is deformed, strain energy is stored in the deformation of its bonds

This energy brings the material back to (or close to) its original shape when the load is removed
(energy can be dissipated or spent in a number of ways, such as heat, sound, surface energy, plastic 
deformation, or kinetic energy)

Total energy change in a material upon deformation:  𝐴=𝑈−𝑇𝑆
where A is the Helmholtz free energy, U is the internal energy component, and –TS is the entropic 
component, made up of temperature, T, and entropy, S

Stains in a Hookean material are relatively small, and all the energy is stored in stretching the 
interatomic bonds, termed the internal energy, U = H-PV

If the material is made of relatively long and unrestrained molecules, the energy can also be stored 
in changes in their shape and mobility, termed the entropic energy, S



Consider the mechanical energy transfer through simple, uniaxial extension 𝑑𝑙 where the volume 
of the material is assumed constant (true for only perfectly plastic materials):
𝐸 = 𝐹 ∗ 𝑑𝑙, therefore
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𝑑𝑈
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Consider also that simple extension results in some volume change 𝑑𝑉 (true for elastic materials)
𝐸 = 𝐹 ∗ 𝑑𝑙 − 𝑃 ∗ 𝑑𝑉, therefore

So the applied load can be stored in two ways: enthalpy increase or entropy decrease
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The first term dominates for a perfectly elastic crystalline material.
Stretching steel at small loads increases the average distance between the atoms in the lattice but 
there is not much ordering or disordering so dS is negligibly small

The second term dominates for elastomer rubber
Stretching a rubber band which consists of freely rotating molecular chains, distorts the chains 
from their most probable end-to-end positions to a less probable stretched state and decreases the 

entropy of the material. Because 
𝑑𝑆

𝑑𝑙
is negative, rubber will contract if you heat it!

1 2



Examples to energy change upon deformation

If you increase the temperature of a material that relies on enthalpy, H for its elastic behavior (like 
ceramic), it will expand:

The asymmetric bond energy curve will result in a change in the average position of the atom

This causes an increase in inter-particle distance with increasing temperature

Thermal expansion coefficient also increases with temperature



Examples to energy change upon deformation

An entropic energy based material (like rubber) will contract upon increase of temperature.

A technical rubber is composed of very long chains (molecular weight of about 105) of one or more 
monomer units, with each unit more or less freely joint to the chain, so that each joint allows a 
wide range of movement. 



Elastomer response

The free rotation about the bonds of the backbone is what 
distinguishes a rubbery polymer from a crystalline one: in a crystalline 
polymer (or in areas of crystallinity) the units cannot move freely 
because they are packed so closely and have relatively low entropy.

As the temperature increases, the movement of the molecules and 
their subunits becomes more and more rapid.
Conversely, as the temperature decreases, the activity of the 
molecules slows until, finally, at a temperature  dependent on the type 
of rubber, it ceases altogether and any force that is exerted on the 
rubber meets the resistance of the covalent bonds linking the atoms.

A rubber at the temperature of liquid nitrogen is Hookean and is glassy. 
The temperature at which this phenomenon occurs is called 
the glass transition temperature.

At normal temperatures the rubber chains rotate in 
Brownian motion. It is this rotation that produces the 
tension and elasticity of rubber. When we hold a rubber and 
stretch, we do work on the rotating molecules to decrease 
their entropy. As a result the rubber releases some heat.
Rubber resists stretching more at high temperatures.



Molecular basis of Hooke’s law

Hooke’s law is an approximation even for a perfect crystalline solid

Consider pulling the perfect crystal in the figure from two ends uniaxially
The kinetic energy associated with the vibrations of the molecules around their average positions 
are negligible and the only contribution to internal energy is the potential energy associated with 
the chemical bonds that bind the molecules to each other.

On a line, each molecule is attached to two neighbors and each molecules is subject to potential 
energy that is the sum of two energy barriers. This energy curve can be represented by a function 
at small displacements:

𝑃𝐸 =
𝑘

2
𝑥2

Where x is the displacement from the minimum energy position which is considered as the origin 
of our one dimensional coordinate system, and k/2 is a constant.

At large displacements there are deviations from this function because of defects in microstructure: 

𝑃𝐸 =
𝑘

2
𝑥2 +
𝑘′

3
𝑥3 +
𝑘′′

4
𝑥4 +⋯

The simple approximation is true for small loads and displacements because

𝐹 = 𝑘𝑥 + 𝑘′𝑥2 +⋯ = 𝑘∆𝑙 + 𝑘′ ∆𝑙 2 +⋯

Higher terms can be neglected for small values of ∆𝑙, so 𝐹 = 𝑘∆𝑙

𝐹 =
𝑑(𝑃𝐸)

𝑑𝑥



Elastic theory

Consider deformation of blocks under axial stresses

The normal stress is equal to the load per area of surface 
perpendicular to the load

𝜎 =
𝐹

𝐴

The deformation of the material per unit length is the normal strain, ε

𝜀 =
𝛿

𝐿

The stress-strain diagram helps us determine the modulus of elasticity of the material, whether it is 
ductile or brittle and whether the strains in the block will disappear when the load is removed



The stress-strain diagram of a material is obtained by conducting a tensile test on the specimen 
of material

The length and the cross-sectional area are recorded as the load is increased at a constant rate

A material elongates linearly at a very slow rate as the load is increased according to the elastic 
theory

After yield stress is reached the specimen undergoes a large deformation with a relatively small 
increase in the applied load.

Yielding is caused by slippage of the material along oblique crystal surfaces and is primarily due 
to shearing stresses.

The diameter of a portion of the specimen begins to decrease due to local instability and results 
in necking

Lower loads are sufficient to rupture the specimen after necking
Rupture of ductile materials occurs along a cone-shaped surface which forms an angle of 
approximately 45 with the normal surface which shows that shear is primary cause of rupture.



Mechanisms of plastic deformation in metals

Fracture surface of a stretched ductile 
material with both elastic and plastic 
deformation



In axial stretching, value of 𝜎 obtained as 
𝐹

𝐴
represents the average stress over the section rather 

than the stress at a specific point P. Note that the stresses are uniform only when the direction of 
the load passes through the centroid of the material.

The stress at point P is defined as 

𝜎 = lim
∆𝐴→0

∆𝐹

∆𝐴

The stress value at point P is generally different than the average stress and is found to vary across 
the section. This variation is small in any section away from the points of application of the loads

In practice, the distribution of the normal stress in an axially loaded material is assumed to be 
uniform, except in the immediate vicinity of the points of application of the loads.

Consider the case when two rigid plates are used to transmit loads to the material
The plates move towards each other, causing the material to get shorter and increase in width and 

thickness, the distribution of stresses is uniform throughout the material and 𝜎𝑦 = 𝜎𝑦 𝑎𝑣𝑒
=
𝑃

𝐴

Consider now that the load is concentrated
The material in the immediate vicinity of the points of application of the load are subjected to very 
large stresses
Other parts of the material away from the ends, at a distance equal to or greater than the width of 
the material are unaffected and load is distributed uniformly



Shearing stresses are created when transverse forces are applied to a material.

These stresses vary greatly across the section and their distribution cannot be assumed uniform

The average shearing stress over the section is obtained by dividing the shearing load by the cross-
sectional area:

𝜏𝑎𝑣𝑒 =
𝐹

𝐴

The deformation of a three dimensional structure under transverse loads is represented as the 
shear strain which is the change in angle of the initially perpendicular normal and transverse 
surfaces.



Both normal and shearing stresses develop in a material subjected to axial loading.

If we consider an oblique section inside the material under axial stress, the normal and shear 
stresses are related to the angle θ formed by the section with a normal plane:

𝜎 =
𝐹

𝐴0
cos2 𝜃

𝜏 =
𝐹

𝐴0
sin 𝜃 cos 𝜃

where 𝐴0 is the area of a section perpendicular 
to the axis of the material

Note that the normal stress is maximum and equal to 
𝐹

𝐴0
for θ=0, while the shear stress is maximum 

and equal to 
𝐹

2𝐴0
for θ=45



Most structural materials and machine components are under more complex loading conditions 
than axial and transverse loadings

For a point Q inside a three dimensional body subjected to various loads in various directions, the 
stress condition created by the loads can be determined.

Sectioning the body at point Q using a plane parallel to the yz plane will help us visualize the stress 
conditions at the plane and point of Q.

The normal and shear stresses on point Q are calculated as

𝜎𝑥 = lim
∆𝐴→0

∆𝐹𝑥

∆𝐴

𝜏𝑥𝑦 = lim
∆𝐴→0

∆𝑉𝑥𝑦
∆𝐴

𝜏𝑥𝑧 = lim
∆𝐴→0

∆𝑉𝑥𝑧
∆𝐴

where ∆𝐹𝑥 is the normal force, ∆𝑉𝑥 is the shearing force acting on the surface perpendicular to 
the x-axis, 𝜏𝑥𝑦 is the shear stress perpendicular the x-axis, parallel to the y-axis and 𝜏𝑥𝑧 is the shear 

stress perpendicular the x-axis, parallel to the z-axis.

While the normal force ∆𝐹𝑥 has a well-defined direction, the shearing force ∆𝑉𝑥 may have any 
direction in the plane of the section. So it is resolved into two component forces ∆𝑉𝑥𝑦, ∆𝑉𝑥𝑧 in 

direction parallel to the y and z axes.



When that analysis is applied to the portion of body located to the right of the vertical plane 
through Q, the same magnitudes but opposite directions are obtained for the normal and shearing 
forces ∆𝐹𝑥,∆𝑉𝑥𝑦, ∆𝑉𝑥𝑧

This time the section faces the negative x axis, so a positive sign for 𝜎𝑥 indicates that the 
corresponding arrow points in the negative x direction and negative y and z directions for 𝜏𝑥𝑦 , 𝜏𝑥𝑧

The same analyses can be done parallel to the zx plane to obtain the stress components 𝜎𝑦, 

𝜏𝑦𝑧 , 𝜏𝑦𝑥 and to the xy plane to obtain components 𝜎𝑧, 𝜏𝑧𝑥 , 𝜏𝑧𝑦



Poisson’s ratio

The normal stresses acting on the three faces of an axially loaded specimen of material are

𝜎𝑥 = 𝐸𝜖𝑥 , 𝜎𝑦 = 0, 𝜎𝑧 = 0

But the corresponding normal strains are

𝜖𝑥 =  
𝜎𝑥
𝐸 , 𝜖𝑦 = 𝜖𝑧 < 0

because an elongation produced by an axial tensile force is accompanied by a contraction in any 
transverse direction in all isotropic, homogeneous materials 

The absolute value of the ratio of the lateral strain to the axial strain is the Poisson’s ratio

𝜐 =
𝜖𝑦

𝜖𝑥
= −
𝜖𝑦

𝜖𝑥
= −
𝜖𝑧
𝜖𝑥

So

𝜖𝑥 =  
𝜎𝑥
𝐸 , 𝜖𝑦 = 𝜖𝑧 = −  

𝜎𝑥𝜐
𝐸

The volume of the material also changes as a result of axial elongation and transverse contraction



Multiaxial stress

The stress condition at point Q is understood clearly by considering a small cube of side a, centered 
at Q and the stresses exerted on each face of the cube.

Only three faces are visible but equal and opposite stress components act on the faces at the back.

As cube length a gets smaller, the error involved in the difference between stresses at the face and 
point is minimized. If we consider the point Q as a small cube we can calculate the normal and 
shearing forces acting on the various faces with area ΔA.

The condition for mechanical equilibrium for an object is that all of the forces and moments acting 
on three axes add up to zero:

 𝐹𝑥 = 0 ,  𝐹𝑦 = 0 ,  𝐹𝑧 = 0

 𝑀𝑥 = 0 ,  𝑀𝑦 = 0 ,  𝑀𝑧 = 0

 𝐹𝑥,𝑦,𝑧 = 0 are satisfied since equal and opposite forces are acting on parallel faces of the cube



 𝑀𝑧 = 0 is satisfied because the shear forces rotating the object around the z-axis are opposite, 
one causing counterclockwise and the other clockwise rotation:

 𝑀𝑧 = 𝜏𝑥𝑦∆𝐴  𝑎 2 − 𝜏𝑥𝑦∆𝐴  𝑎 2 = 0

And we conclude that 𝜏𝑥𝑦 = 𝜏𝑦𝑥

Similarly from the remaining equations  𝑀𝑥 = 0 ,  𝑀𝑦 = 0, the relations between other shear 

stresses are obtained:

𝜏𝑦𝑧 = 𝜏𝑧𝑦 𝜏𝑧𝑥 = 𝜏𝑥𝑧

Hence it is seen that only 6 stress components are required to define the condition of stress at a 
given point Q

𝜎 =

𝜎𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑥𝑦 𝜎𝑦 𝜏𝑦𝑧
𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧



Shear stresses are present in all stressed materials except hydrostatically stressed ones

Consider the case of axial loading. The conditions of stress in part of the material is described as:

The only stresses acting on the small cube parallel to the loaded surface are normal stresses 
because 

𝜎 =
𝑃

𝐴0
cos2 0 =

𝑃

𝐴0

𝜏 =
𝑃

𝐴0
sin 0 cos 0 = 0

However if the small cube is rotated by 45 around z-axis, normal and shearing stresses of equal 
magnitude are exerted on four faces of the cube

The same loading condition may lead to different deformations at different points in a body, 
depending on the orientation of the element considered.



In the case of multiaxial loading of a material, deformations and the strains can be calculated by 
dividing the loads into normal and shearing forces in the three axis.

Consider the material as a unit cube with sides equal to 1. Consider also only the normal 
components of stress to calculate the normal strains as a generalized Hooke’s law

The effect of each normal stress component on the strain components 𝜖𝑥, 𝜖𝑦, 𝜖𝑧 should be 

calculated separately and combined.

𝜖𝑥 = +
𝜎𝑥
𝐸
−
𝜈𝜎𝑦

𝐸
−
𝜈𝜎𝑧
𝐸

𝜖𝑦 = −
𝜈𝜎𝑥
𝐸
+
𝜎𝑦

𝐸
−
𝜈𝜎𝑧
𝐸

𝜖𝑧 = −
𝜈𝜎𝑥
𝐸
−
𝜈𝜎𝑦

𝐸
+
𝜎𝑧
𝐸

This result is valid only as long the stresses do not exceed the proportional limit and as long as the 
deformations involved are small



To consider the shear strains in a real stress situation, the shearing stress components should also 
be considered

Shearing stresses tend to deform a cubic material into an oblique parallelepiped

Two of the angles formed by the four faces under stress are reduced from 
𝜋

2
to 
𝜋

2
− 𝛾𝑥𝑦

and two angles are increased from 
𝜋

2
to 
𝜋

2
+ 𝛾𝑥𝑦

The angle 𝛾𝑥𝑦 is the shear strain corresponding to the x and y directions in the plane of z

Shear strains on other planes may also be calculated similarly



Plotting successive values of 𝜏𝑥𝑦 against  𝛾𝑥𝑦 gives us the 

shearing stress-strain diagram for the material

Obtained yield strength, ultimate strength values are 
about half of those from the tensile test

For values of the shearing stress which do not exceed the 
proportional limit in shear, Hooke’s law for shearing is 
defined as

𝜏𝑥𝑦 = 𝐺𝛾𝑥𝑦

The relations for the other planes are obtained by 
considering  the corresponding stress components

𝜏𝑦𝑧 = 𝐺𝛾𝑦𝑧 𝜏𝑧𝑥 = 𝐺𝛾𝑧𝑥



The following group of equations representing the generalized Hooke’s law for a homogeneous 
isotropic material under multiaxial loading is obtained:

𝜖𝑥 = +
𝜎𝑥
𝐸
−
𝜈𝜎𝑦

𝐸
−
𝜈𝜎𝑧
𝐸

𝜖𝑦 = −
𝜈𝜎𝑥
𝐸
+
𝜎𝑦

𝐸
−
𝜈𝜎𝑧
𝐸

𝜖𝑧 = −
𝜈𝜎𝑥
𝐸
−
𝜈𝜎𝑦

𝐸
+
𝜎𝑧
𝐸

𝜏𝑥𝑦

𝐺
= 𝛾𝑥𝑦

𝜏𝑦𝑧

𝐺
= 𝛾𝑦𝑧

𝜏𝑧𝑥

𝐺
= 𝛾𝑧𝑥

The 6 strain components of a material under stress in the elastic region can be calculated from the 
6 stress components and any 2 of E, G, ν

𝜖 =

+
𝜎𝑥
𝐸
−
𝜈𝜎𝑦

𝐸
−
𝜈𝜎𝑧
𝐸

𝜏𝑥𝑦

𝐺

𝜏𝑥𝑧
𝐺

𝜏𝑥𝑦

𝐺
−
𝜈𝜎𝑥
𝐸
+
𝜎𝑦

𝐸
−
𝜈𝜎𝑧
𝐸

𝜏𝑦𝑧

𝐺
𝜏𝑥𝑧
𝐺

𝜏𝑦𝑧

𝐺
−
𝜈𝜎𝑥
𝐸
−
𝜈𝜎𝑦

𝐸
+
𝜎𝑧
𝐸



The strain energy of deformation per unit of a linear elastic material is  

𝑈0 =
1

2
 𝜎𝑖𝑗𝜖𝑖𝑗

𝜖 =

+
𝜎𝑥
𝐸
−
𝜈𝜎𝑦

𝐸
−
𝜈𝜎𝑧
𝐸

𝜏𝑥𝑦

𝐺

𝜏𝑥𝑧
𝐺

𝜏𝑥𝑦

𝐺
−
𝜈𝜎𝑥
𝐸
+
𝜎𝑦

𝐸
−
𝜈𝜎𝑧
𝐸

𝜏𝑦𝑧

𝐺
𝜏𝑥𝑧
𝐺

𝜏𝑦𝑧

𝐺
−
𝜈𝜎𝑥
𝐸
−
𝜈𝜎𝑦

𝐸
+
𝜎𝑧
𝐸

𝜎 =

𝜎𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑥𝑦 𝜎𝑦 𝜏𝑦𝑧
𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧

𝑈0 =
1

2
𝜎𝑥𝑥𝜖𝑥𝑥 + 𝜎𝑦𝑦𝜖𝑦𝑦 + 𝜎𝑧𝑧𝜖𝑧𝑧 + 𝜏𝑥𝑦𝛾𝑥𝑦 + 𝜏𝑦𝑧𝛾𝑦𝑧 + 𝜏𝑧𝑥𝛾𝑧𝑥

𝑈0 =
1

2
𝜎𝑥
𝜎𝑥
𝐸
−
𝜈𝜎𝑦
𝐸
−
𝜈𝜎𝑧
𝐸
+ 𝜎𝑦 −

𝜈𝜎𝑥
𝐸
+
𝜎𝑦
𝐸
−
𝜈𝜎𝑧
𝐸
+ 𝜎𝑧 −

𝜈𝜎𝑥
𝐸
−
𝜈𝜎𝑦
𝐸
+
𝜎𝑧
𝐸
+ 𝜏𝑥𝑦
𝜏𝑥𝑦
𝐺
+ 𝜏𝑦𝑧
𝜏𝑦𝑧
𝐺
+ 𝜏𝑥𝑧
𝜏𝑥𝑧
𝐺



A material of rectangular prism geometry that 
is subjected to axial loading deforms into a 
rectangular parallelepiped. The prism will 
elongate along the axis of the tensile force and 
will contract in both of the transverse y and z 
directions:

For an element in the shape of a cube with 
unit sides, the deformed geometry will have 
sides 1 + 𝜖𝑥 , 1 − 𝜈𝜖𝑥, 1 − 𝜈𝜖𝑥 according to 
the Hooke’s law

If the element is oriented at 45 to the axis of 
the load, the cube will transform into an 
oblique parallelepiped due to the shearing 
stress components:

Each of the right angles increases or decreases 
by the shearing strain 𝛾′that is induced by the 
shear stress component of the axial stress and 
𝛾′ = 𝛾𝑚𝑎𝑥

The relationship between Poisson’s ratio, Elastic and Shear moduli



Consider the prismatic element obtained by intersecting the unit cubic element by a diagonal plane

It deforms into a slice which has horizontal and vertical  sides equal to 1 + 𝜖𝑥 and 1 − 𝜈𝜖𝑥 by the 
applied force.

The angles of the undeformed and the deformed slices are one half of 
𝜋

2
and 
𝜋

2
− 𝛾𝑚𝑎𝑥 respectively

𝛽 =
𝜋

4
−
𝛾𝑚𝑎𝑥
2

tan 𝛽 =
tan
𝜋
4
− tan
𝛾𝑚𝑎𝑥
2

1 + tan
𝜋
4
tan
𝛾𝑚𝑎𝑥
2

=
1 − tan

𝛾𝑚𝑎𝑥
2

1 + tan
𝛾𝑚𝑎𝑥
2

Since 
𝛾𝑚𝑎𝑥

2
is a very small angle,

tan 𝛽 =
1 −
𝛾𝑚𝑎𝑥
2

1 +
𝛾𝑚𝑎𝑥
2

Also

tan 𝛽 =
1 − 𝜈𝜖𝑥
1 + 𝜖𝑥

Hence,

𝛾𝑚𝑎𝑥 =
1 + 𝜈 𝜖𝑥

1 +
1 − 𝜈
2
𝜖𝑥



𝛾𝑚𝑎𝑥 =
1 + 𝜈 𝜖𝑥

1 +
1 − 𝜈
2
𝜖𝑥

The denominator may be taken as 1 since 𝜖𝑥 ≪ 1, and the relation between the maximum 
shearing strain and the axial strain is obtained:

𝛾𝑚𝑎𝑥 = 1 + 𝜈 𝜖𝑥
According to Hooke’s law,

𝛾𝑚𝑎𝑥 =
𝜏𝑚𝑎𝑥

𝐺
𝜖𝑥 =

𝜎𝑥

𝐸

𝜏𝑚𝑎𝑥
𝐺
= 1 + 𝜈

𝜎𝑥
𝐸

𝐸

𝐺
= 1 + 𝜈

𝜎𝑥
𝜏𝑚𝑎𝑥

Recall that the axial stress and the maximum shearing stress are defined as 𝜎𝑥 =
𝑃

𝐴
and 𝜏𝑚𝑎𝑥 =

𝑃

2𝐴
𝐸

𝐺
= 2 1 + 𝜈

or
𝐸

2𝐺
= 1 + 𝜈

Hence the constants E, G and ν are related to each other for any material


