
Plasticity and 
Deformation Process
The general relationships between stress and strain 

in elastic deformation



Both the stresses and the deformations of a material under stress should be analyzed to completely understand 
its deformation behavior

Let’s consider deformation of plates under axial stresses

The normal stress is equal to the load per area of surface 
perpendicular to the load

𝜎 =
𝐹

𝐴

The deformation of the material per unit length is the normal strain, ε

𝜀 =
𝛿

𝐿

The stress-strain diagram helps us determine the modulus of elasticity of the material, whether it is ductile or 
brittle and whether the strains in the plate will disappear when the load is removed



The stress-strain diagram of a material is obtained by conducting a tensile test on the specimen 
of material

The length and the cross-sectional area are recorded as the load is increased at a constant rate

A ductile material elongates linearly at a very slow rate as the load is increased

After yield stress is reached the specimen undergoes a large deformation with a relatively small 
increase in the applied load.

Yielding is caused by slippage of the material along oblique crystal surfaces and is primarily due 
to shearing stresses.

The diameter of a portion of the specimen begins to decrease due to local instability and results 
in necking

Lower loads are sufficient to rupture the specimen after necking

Rupture of ductile materials occurs along a cone-shaped surface which forms an angle of 
approximately 45 with the normal surface which shows that shear is primary casue of rupture.





In axial stress, value of 𝜎 obtained as 
𝐹

𝐴
represents the average stress over the section rather than the stress at a 

specific point P. Note that the stresses are uniform only when the direction of the load passes through the 
centroid of the material.

The stress at point P is defined as 

𝜎 = lim
Δ𝐴→0

Δ𝐹

Δ𝐴

The stress value at point P is generally different than the average stress and is found to vary across the section. 
This variation is small in any section away from the points of application of the loads

In practice, the distribution of the normal stress in an axially loaded material is assumed to be uniform, except in 
the immediate vicinity of the points of application of the loads.

Consider the case when two rigid plates are used to transmit loads to the material
The plates move towards each other, causing the material to get shorter and increase in width and thickness, the 

distribution of stresses is uniform throughout the material and 𝜎𝑦 = 𝜎𝑦 𝑎𝑣𝑒
=

𝑃

𝐴

Consider now that the load is concentrated
The material in the immediate vicinity of the points of application of the load are subjected to very large stresses
Other parts of the material away from the ends, at a distance equal to or greater than the width of the material 
are unaffected and load is distributed uniformly



Shearing stresses are created when transverse forces are applied to a material.

These stresses vary greatly across the section and their distribution cannot be assumed uniform

The average shearing stress over the section is obtained by dividing the shearing load by the cross-sectional area:

𝜏𝑎𝑣𝑒 =
𝐹

𝐴

The deformation of a three dimensional structure under transverse loads is represented as the shear strain which 
is the change in angle of the initially perpendicular normal and transverse surfaces.



Both normal and shearing stresses develop in a material subjected to axial loading.

If we consider an oblique section inside the material under axial stress, the normal and shear stresses are related 
to the angle θ formed by the section with a normal plane:

𝜎 =
𝐹

𝐴0
cos2 𝜃

𝜏 =
𝐹

𝐴0
sin 𝜃 cos𝜃

where 𝐴0 is the area of a section perpendicular 
to the axis of the material

Note that the normal stress is maximum and equal to 
𝐹

𝐴0
for θ=0, while the shear stress is maximum and equal to 

𝐹

2𝐴0
for θ=45



Most structural materials and machine components are under more complex loading conditions than axial and 
transverse loadings

For a point Q inside a three dimensional body subjected to various loads in various directions, the stress condition 
created by the loads can be determined.

Sectioning the body at point Q using a plane parallel to the yz plane will help us visualize the stress conditions at 
the plane and point of Q.

The normal and shear stresses on point Q are calculated as

𝜎𝑥 = lim
Δ𝐴→0

Δ𝐹𝑥

Δ𝐴

𝜏𝑥𝑦 = lim
Δ𝐴→0

Δ𝑉𝑥
𝑦

Δ𝐴

𝜏𝑥𝑧 = lim
Δ𝐴→0

Δ𝑉𝑥
𝑧

Δ𝐴

where Δ𝐹𝑥 is the normal force, Δ𝑉𝑥 is the shearing force acting on the surface perpendicular to the 
x-axis, 𝜏𝑥𝑦 is the shear stress perpendicular the x-axis, parallel to the y-axis and 𝜏𝑥𝑧 is the shear stress 

perpendicular the x-axis, parallel to the z-axis.

While the normal force Δ𝐹𝑥 has a well-defined direction, the shearing force Δ𝑉𝑥 may have any direction in the 
plane of the section. So it is resolved into two component forces Δ𝑉𝑥

𝑦, Δ𝑉𝑥
𝑧 in direction parallel to the y and z 

axes.



When that analysis is applied to the portion of body located to the right of the vertical plane through Q, the same 
magnitudes but opposite directions are obtained for the normal and shearing forces Δ𝐹𝑥,Δ𝑉𝑥

𝑦, Δ𝑉𝑥
𝑧

This time the section faces the negative x axis, so a positive sign for 𝜎𝑥 indicates that the corresponding arrow 
points in the negative z direction and negative y and z directions for 𝜏𝑥𝑦, 𝜏𝑥𝑧

The same analyses can be done parallel to the zx plane to obtain the stress components 𝜎𝑦, 𝜏𝑦𝑧, 𝜏𝑦𝑥 and to the xy

plane to obtain components 𝜎𝑧, 𝜏𝑧𝑥, 𝜏𝑧𝑦



Poisson’s ratio

The normal stresses acting on the three faces of an axially loaded specimen of material are

𝜎𝑥 = 𝐸𝜖𝑥, 𝜎𝑦 = 0, 𝜎𝑧 = 0

But the corresponding normal strains are

𝜖𝑥 =  
𝜎𝑥

𝐸 , 𝜖𝑦 = 𝜖𝑧 < 0

because an elongation produced by an axial tensile force is accompanied by a contraction in any transverse 
direction in all isotropic, homogeneous materials

The absolute value of the ratio of the lateral strain to the axial strain is the Poisson’s ratio

𝜐 =
𝜖𝑦
𝜖𝑥

= −
𝜖𝑦
𝜖𝑥

= −
𝜖𝑧
𝜖𝑥

So

𝜖𝑥 =  
𝜎𝑥

𝐸 , 𝜖𝑦 = 𝜖𝑧 −  
𝜎𝑥𝜐

𝐸

The volume of the material also changes as a result of axial elongation and transverse contraction



Multiaxial stress

The stress condition at point Q is understood clearly by considering a small cube of side a, centered at Q and the 
stresses exerted on each face of the cube.

Only three faces are visible but equal and opposite stress components act on the faces at the back.

As cube length a gets smaller, the error involved in the difference between stresses at the face and point is 
minimized. If we consider the point Q as a small cube we can calculate the normal and shearing forces acting on 
the various faces with area ΔA.

The condition for mechanical equilibrium for an object is that all of the forces and moments acting on three axes 
add up to zero:

 𝐹𝑥 = 0 ,  𝐹𝑦 = 0 ,  𝐹𝑧 = 0

 𝑀𝑥 = 0 ,  𝑀𝑦 = 0 ,  𝑀𝑧 = 0

 𝐹𝑥,𝑦,𝑧 = 0 are satisfied since equal and opposite forces are acting on parallel faces of the cube



 𝑀𝑧 = 0 is satisfied because the shear forces rotating the object around the z-axis are opposite, one causing 
counterclockwise and the other clockwise rotation:

 𝑀𝑧 = 𝜏𝑥𝑦Δ𝐴 𝑎 − 𝜏𝑥𝑦Δ𝐴 𝑎 = 0

And we conclude that 𝜏𝑥𝑦 = 𝜏𝑦𝑥

Similarly from the remaining equations  𝑀𝑥 = 0 ,  𝑀𝑦 = 0, the relations between other shear stresses are 

obtained:

𝜏𝑦𝑧 = 𝜏𝑧𝑦 𝜏𝑧𝑥 = 𝜏𝑥𝑧

Hence it is seen that only 6 stress components are required to define the condition of stress at a given point Q

𝜎 =

𝜎𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑥𝑦 𝜎𝑦 𝜏𝑦𝑧
𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧



Shear stresses are present in all stressed materials except hydrostatically stressed ones

Consider the case of axial loading. The conditions of stress in part of the material is described as:

The only stresses acting on the small cube parallel to the loaded surface are normal stresses because 

𝜎 =
𝑃

𝐴0
cos2 0 =

𝑃

𝐴0

𝜏 =
𝑃

𝐴0
sin 0 cos 0 = 0

However if the small cube is rotated by 45 around z-axis, normal and shearing stresses of equal magnitude are 
exerted on four faces of the cube

The same loading condition may lead to different deformations at different points in a body, depending on the 
orientation of the element considered.



In the case of multiaxial loading of a material, deformations and the strains can be calculated by dividing the loads 
into normal and shearing forces in the three axis.

Consider the material as a unit cube with sides equal to 1. Consider also only the normal components of stress to 
calculate the normal strains as a generalized Hooke’s law

The effect of each normal stress component on the strain components 𝜖𝑥, 𝜖𝑦, 𝜖𝑧 should be calculated separately 

and combined.

𝜖𝑥 = +
𝜎𝑥
𝐸
−
𝜈𝜎𝑦
𝐸

−
𝜈𝜎𝑧
𝐸

𝜖𝑦 = −
𝜈𝜎𝑥
𝐸

+
𝜎𝑦
𝐸
−
𝜈𝜎𝑧
𝐸

𝜖𝑧 = −
𝜈𝜎𝑥
𝐸

−
𝜈𝜎𝑦
𝐸

+
𝜎𝑧
𝐸

This result is valid only as long the stresses do not exceed the proportional limit and as long as the deformations 
involved are small



To consider the shear strains in a real stress situation, the shearing stress components should also be considered

Shearing stresses tend to deform a cubic material into an oblique parallelepiped

Two of the angles formed by the four faces under stress are reduced from 
𝜋

2
to 

𝜋

2
− 𝛾𝑥𝑦

and two angles are increased from 
𝜋

2
to 

𝜋

2
+ 𝛾𝑥𝑦

The angle 𝛾𝑥𝑦 is the shear strain corresponding to the x and y directions in the plane of z

Shear strains on other planes may also be calculated similarly



Plotting successive values of 𝜏𝑥𝑦 against  𝛾𝑥𝑦 gives us the shearing 

stress-strain diagram for the material

Obtained yield strength, ultimate strength values are about half of 
the material from the tensile test

For values of the shearing stress which do not exceed the 
proportional limit in shear, Hooke’s law for shearing is defined as

𝜏𝑥𝑦 = 𝐺𝛾𝑥𝑦

The relations for the other planes are obtained by considering  the 
corresponding stress components

𝜏𝑦𝑧 = 𝐺𝛾𝑦𝑧 𝜏𝑧𝑥 = 𝐺𝛾𝑧𝑥



The following group of equations representing the generalized Hooke’s law for a homogeneous isotropic material 
under multiaxial loading is obtained:

𝜖𝑥 = +
𝜎𝑥
𝐸
−
𝜈𝜎𝑦
𝐸

−
𝜈𝜎𝑧
𝐸

𝜖𝑦 = −
𝜈𝜎𝑥
𝐸

+
𝜎𝑦

𝐸
−
𝜈𝜎𝑧
𝐸

𝜖𝑧 = −
𝜈𝜎𝑥
𝐸

−
𝜈𝜎𝑦
𝐸

+
𝜎𝑧
𝐸

𝜏𝑥𝑦 = 𝐺𝛾𝑥𝑦 𝜏𝑦𝑧 = 𝐺𝛾𝑦𝑧 𝜏𝑧𝑥 = 𝐺𝛾𝑧𝑥

The 6 strain components of a material under stress in the elastic region can be calculated from the 6 stress 
components and any 2 of E, G, ν

𝜖 =

+
𝜎𝑥
𝐸
−
𝜈𝜎𝑦
𝐸

−
𝜈𝜎𝑧
𝐸

𝜏𝑥𝑦
𝐺

𝜏𝑥𝑧
𝐺

𝜏𝑥𝑦
𝐺

−
𝜈𝜎𝑥
𝐸

+
𝜎𝑦
𝐸
−
𝜈𝜎𝑧
𝐸

𝜏𝑦𝑧
𝐺

𝜏𝑥𝑧
𝐺

𝜏𝑦𝑧
𝐺

−
𝜈𝜎𝑥
𝐸

−
𝜈𝜎𝑦
𝐸

+
𝜎𝑧
𝐸



The strain energy of deformation per unit of a linear elastic material is  

𝑈0 =
1

2
𝜎𝑖𝑗𝜖𝑖𝑗

𝜖 =

+
𝜎𝑥
𝐸
−
𝜈𝜎𝑦

𝐸
−
𝜈𝜎𝑧
𝐸

𝜏𝑥𝑦

𝐺

𝜏𝑥𝑧
𝐺

𝜏𝑥𝑦

𝐺
−
𝜈𝜎𝑥
𝐸

+
𝜎𝑦

𝐸
−
𝜈𝜎𝑧
𝐸

𝜏𝑦𝑧

𝐺
𝜏𝑥𝑧
𝐺

𝜏𝑦𝑧

𝐺
−
𝜈𝜎𝑥
𝐸

−
𝜈𝜎𝑦

𝐸
+
𝜎𝑧
𝐸

𝜎 =

𝜎𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑥𝑦 𝜎𝑦 𝜏𝑦𝑧
𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧

𝑈0 =
1

2
𝜎𝑥𝑥𝜖𝑥𝑥 + 𝜎𝑦𝑦𝜖𝑦𝑦 + 𝜎𝑧𝑧𝜖𝑧𝑧 + 𝜏𝑥𝑦𝛾𝑥𝑦 + 𝜏𝑦𝑧𝛾𝑦𝑧 + 𝜏𝑧𝑥𝛾𝑧𝑥

𝑈0 =
1

2
𝜎𝑥

𝜎𝑥
𝐸
−
𝜈𝜎𝑦
𝐸

−
𝜈𝜎𝑧
𝐸

+ 𝜎𝑦 −
𝜈𝜎𝑥
𝐸

+
𝜎𝑦
𝐸
−
𝜈𝜎𝑧
𝐸

+ 𝜎𝑧 −
𝜈𝜎𝑥
𝐸

−
𝜈𝜎𝑦
𝐸

+
𝜎𝑧
𝐸

+ 𝜏𝑥𝑦
𝜏𝑥𝑦
𝐺

+ 𝜏𝑦𝑧
𝜏𝑦𝑧
𝐺

+ 𝜏𝑥𝑧
𝜏𝑥𝑧
𝐺



A material of rectangular prism geometry that is 
subjected to axial loading deforms into a rectangular 
parallelepiped. The prism will elongate along the axis 
of the tensile force and will contract in both of the 
transverse y and z directions:

For an element in the shape of a cube with unit sides, 
the deformed geometry will have sides 1 + 𝜖𝑥 , 1 −
𝜈𝜖𝑥, 1 − 𝜈𝜖𝑥 according to the Hooke’s law

If the element is oriented at 45 to the axis of the load, 
the cube will transform into an oblique parallelepiped 
due to the shearing stress components:

Each of the right angles increases or decreases by the 
shearing strain 𝛾′that is induced by the shear stress 
component of the axial stress and 𝛾′ = 𝛾𝑚𝑎𝑥



Consider the prismatic element obtained by intersecting the unit cubic element by a diagonal plane

It deforms into a slice which has horizontal and vertical  sides equal to 1 + 𝜖𝑥 and 1 − 𝜈𝜖𝑥 by the shearing force:

The angles of the undeformed and the deformed slices are 

one half of 
𝜋

2
and 

𝜋

2
− 𝛾𝑚𝑎𝑥 respectively

𝛽 =
𝜋

4
−
𝛾𝑚𝑎𝑥

2

tan 𝛽 =
tan

𝜋
4
− tan

𝛾𝑚𝑎𝑥
2

1 + tan
𝜋
4
tan

𝛾𝑚𝑎𝑥
2

=
1 − tan

𝛾𝑚𝑎𝑥
2

1 + tan
𝛾𝑚𝑎𝑥
2

Since 
𝛾𝑚𝑎𝑥

2
is a very small angle,

tan 𝛽 =
1 −

𝛾𝑚𝑎𝑥
2

1 +
𝛾𝑚𝑎𝑥
2

Also

tan 𝛽 =
1 − 𝜈𝜖𝑥
1 + 𝜖𝑥

Hence,

𝛾𝑚𝑎𝑥 =
1 + 𝜈 𝜖𝑥

1 +
1 − 𝜈
2

𝜖𝑥



𝛾𝑚𝑎𝑥 =
1 + 𝜈 𝜖𝑥

1 +
1 − 𝜈
2

𝜖𝑥

The denominator may be taken as 1 since 𝜖𝑥 ≪ 1, and the relation between the maximum shearing strain and 
the axial strain is obtained:

𝛾𝑚𝑎𝑥 = 1 + 𝜈 𝜖𝑥

According to Hooke’s law,

𝛾𝑚𝑎𝑥 =
𝜏𝑚𝑎𝑥

𝐺
𝜖𝑥 =

𝜎𝑥

𝐸

𝜏𝑚𝑎𝑥

𝐺
= 1 + 𝜈

𝜎𝑥
𝐸

𝐸

𝐺
= 1 + 𝜈

𝜎𝑥
𝜏𝑚𝑎𝑥

Recall that the axial stress and the maximum shearing stress are defined as 𝜎𝑥 =
𝑃

𝐴
and 𝜏𝑚𝑎𝑥 =

𝑃

2𝐴
𝐸

𝐺
= 2 1 + 𝜈

or
𝐸

2𝐺
= 1 + 𝜈

Hence the constants E, G and ν are related to each other for any material





Hydrostatic and Deviatoric Stresses

Total stress tensor can be divided into two components:
1. Hydrostatic or mean stress tensor (𝜎𝑚) involving only pure tension or compression
2. Deviatoric stress tensor (𝜎𝑖𝑗

′ ) representing pure shear with no normal components



The stress-strain diagram of a material is obtained by conducting a tensile test on the specimen of material

The initial portion of the stress-strain diagram  shows proportionality between the stress applied and the 
resultant strain according to the Hooke’s law

𝜎 = 𝐸𝜀

The largest value of the stress for which Hooke’s law can be used for a material is the proportional limit

For ductile materials with a well defined yield point, it coincides with the yield point, for others Hooke’s law can 
be used for stress values slightly larger than the proportional limit.

Physical properties of materials like strength, ductility, corrosion resistance may be significantly affected by 
alloying, heat treatment and manufacturing processes

Although the variation of stress with strain for pure iron and different grades of steel is great and show different 
yield strength, ultimate strength and ductility, they posses the same stiffness











If the strains caused in a material by the application of an 
axial load disappear when the load is removed, the material 
behaves elastically. The largest value of stress for which 
elastic behavior continues is the elastic limit.

The elastic limit, proportional limit and the yield point are 
equal for plastic materials with a well-defined yield point

The material behaves elastically below the yield point

Above the yield point the material yields. When the load is 
removed the stress and strain decrease linearly along a line 
parallel to the elastic loading curve.

Overall strain does not return to zero because plastic 
deformation has taken place above the yield stress.

The plastic deformation depends not only upon the 
maximum value reached by the stress but also upon the 
time elapsed before load is removed.



If after being loaded and unloaded, the material is loaded again, the new curve will rise parallel to the initial curve 
until it almost reaches point C and then connect with the curved portion of the original diagram.

Note that the straight elastic portion of the new loading curve is longer than the initial due to strain hardening. 

The elastic limit has increased but the ductility decreased since the point of rupture is not changed.

If the second loading was done in compression instead of tension, an interesting behavior is observed for ductile 
materials

A compressive load is applied after the initial tensile load is removed at point D, compressing the material until 
the negative yield strength along a curved portion DHJ of the diagram

When the compressive load is removed at point J the stress returns to zero with an equal slope to the elastic 
region.

If the initial tension is large enough to cause strain hardening until point C’, the second compressive stress 
reaches its maximum value  at H’ where material yields. While the maximum value of the compressive stress is 
less than the yield stress, the total change is equal to twice the yield strength of the material.









Fatigue

Although the elastic region of the stress-strain curve is a safe zone against plastic deformation, repeating the load 
many times (millions) will cause rupture at a stress much lower than the yield strength of the material, hence 
fatigue.

The stress-cycle curve for steel shows that relatively few cycles  are enough to cause rupture if the applied 
maximum stress is high.

As the magnitude of stress is reduced, the number of cycles to rupture increases. For steel a stress limit is reached 
called the endurance limit, below which it will not rupture even for infinitely many cycles. 

For non-ferrous metals like aluminum, the stress at failure continues to decrease as the number of loading cycles 
is increased. The stress around 500 million cycles is called the fatigue limit.

The mechanism of fatigue is slow propagation of a crack that initiate at an imperfection with each cycle

Sudden brittle fracture occurs when the amount of undamaged material is insufficient to carry the maximum load
Figure fatigue fracture surface







Creep

Creep is a performance-based behaviour since it is not an intrinsic materials response.

It is defined as time-dependent deformation at absolute temperatures greater than one half the absolute melting

Diffusion-controlled mechanisms have significant effect on high temperature mechanical properties and 
performances. 
For example, dislocation climb, concentration of vacancies, new slip systems, and grain boundary sliding all are 
diffusion-controlled and affect the behaviour of materials at high temperatures. In addition, corrosion or
oxidation mechanisms, which are diffusion-rate dependent, will have an effect on the life time of materials at high 
temperatures.

An empirical relation which describes the strain-time relation is 𝜀 = 𝜀𝑖 + 𝜀𝑡 1 − 𝑒𝑥𝑝 𝑟𝑡 + 𝑡  𝜀𝑠𝑠
where r is a constant, 𝜀𝑡 is the strain at the transition from primary to secondary creep and
𝜀𝑠𝑠 is the steady-state strain rate



𝑑𝜀

𝑑𝑡
=
𝐶𝜎𝑚

𝑑𝑏
𝑒−

𝑄
𝑘𝑇 General creep equation

where E  is the creep strain, C is a constant dependent on the material and the particular creep mechanism, m and b are exponents dependent on the creep 

mechanism, Q is the activation energy of the creep mechanism, σ is the applied stress, d is the grain size of the material, k is Boltzmann's constant, and T is 

the absolute temperature


