Plasticity and
Deformation Process

The general relationships between stress and strain

in elastic deformation



Both the stresses and the deformations of a material under stress should be analyzed to completelv understand
its deformation behavior

Let’s consider deformation of plates under axial stresses

F
The normal stress is equal to the load per area of surface
perpendicular to the load
A
F :
o=-
A
The deformation of the material per unit length is the normal strain, € Fl
1)
£E=-
L

The stress-strain diagram helps us determine the modulus of elasticity of the material, whether it is ductile or
brittle and whether the strains in the plate will disappear when the load is removed



The stress-strain diagram of a material is obtained by conducting a tensile test on the specimen

of material

The length and the cross-sectional area are recorded as the load is increased at a constant rate

A ductile material elongates linearly at a very slow rate as the load is increased

After yield stress is reached the specimen undergoes a large deformation with a relatively small
increase in the applied load.

Yielding is caused by slippage of the material along oblique crystal surfaces and is primarily due
to shearing stresses.

The diameter of a portion of the specimen begins to decrease due to local instability and results

in necking

Lower loads are sufficient to rupture the specimen after necking

Rupture of ductile materials occurs along a cone-shaped surface which forms an angle of P
approximately 45 with the normal surface which shows that shear is primary casue of rupture. a
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In axial stress, value of o obtained as " represents the average stress over the section rather than the stress at a

specific point P. Note that the stresses are uniform only when the direction of the load passes through the
centroid of the material.

The stress at point P is defined as

_ o AF
7= A

The stress value at point P is generally different than the average stress and is found to vary across the section.
This variation is small in any section away from the points of application of the loads

In practice, the distribution of the normal stress in an axially loaded material is assumed to be uniform, except in
the immediate vicinity of the points of application of the loads.

Consider the case when two rigid plates are used to transmit loads to the material

The plates move towards each other, causing the material to get shorter and increase in width and thickness, the

P

distribution of stresses is uniform throughout the material and g, = (ay) =-
ave A

Consider now that the load is concentrated

The material in the immediate vicinity of the points of application of the load are subjected to very large stresses
Other parts of the material away from the ends, at a distance equal to or greater than the width of the material
are unaffected and load is distributed uniformly



Shearing stresses are created when transverse forces are applied to a material.
These stresses vary greatly across the section and their distribution cannot be assumed uniform

The average shearing stress over the section is obtained by dividing the shearing load by the cross-sectional area:

F
Tave = Z

The deformation of a three dimensional structure under transverse loads is represented as the shear strain which
is the change in angle of the initially perpendicular normal and transverse surfaces.




Both normal and shearing stresses develop in a material subjected to axial loading.

If we consider an oblique section inside the material under axial stress, the normal and shear stresses are related
to the angle 6 formed by the section with a normal plane:

F o = »
o =—cos? 6 - t—’
Ag ‘
(@) Axial loading
F
T =-—sinfcosf
0 Om= P/A()
where A is the area of a section perpendicular
. . (b) Stresses for 6 = 0
to the axis of the material
o’ =P/2A,
Tm =I)/2A()

(¢) Stresses for 6 = 45°
T = PI24,

m

o' =P/24,
(d) Stresses for § = —45°
Fig. 1.27
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Note that the normal stress is maximum and equal to ™ for 6=0, while the shear stress is maximum and equal to
0

= for6=45
240



Most structural materials and machine components are under more complex loading conditions than axial and
transverse loadings

For a point Q inside a three dimensional body subjected to various loads in various directions, the stress condition
created by the loads can be determined.

Sectioning the body at point Q using a plane parallel to the yz plane will help us visualize the stress conditions at
the plane and point of Q.

The normal and shear stresses on point Q are calculated as

_ o AFF
% = A0 AA

A
Tey = A% AA

_ i AV,
xz = o AA

where AF* is the normal force, AV* is the shearing force acting on the surface perpendicular to the
X-axis, Tyy is the shear stress perpendicular the x-axis, parallel to the y-axis and 7, is the shear stress
perpendicular the x-axis, parallel to the z-axis.

While the normal force AF* has a well-defined direction, the shearing force AV* may have any direction in the
plane of the section. So it is resolved into two component forces AV*,,, AV*, in direction parallel to the y and z
axes.



When that analysis is applied to the portion of body located to the right of the vertical plane through Q, the same
magnitudes but opposite directions are obtained for the normal and shearing forces AF*,AV*,,, AV*,

This time the section faces the negative x axis, so a positive sign for o, indicates that the corresponding arrow
points in the negative z direction and negative y and z directions for Ty, Ty,

The same analyses can be done parallel to the zx plane to obtain the stress components ay, Ty, Ty, and to the xy
plane to obtain components g, T,x, T,y




Poisson’s ratio

The normal stresses acting on the three faces of an axially loaded specimen of material are
Oy = Eex,ay =0,0,=0

But the corresponding normal strains are
€x = J"/E,ey =¢€,<0

because an elongation produced by an axial tensile force is accompanied by a contraction in any transverse
direction in all isotropic, homogeneous materials

The absolute value of the ratio of the lateral strain to the axial strain is the Poisson’s ratio

__ & _ &

€x €x

So

Exzo-x/E;Ey =EZ_O'xU/E

The volume of the material also changes as a result of axial elongation and transverse contraction



Multiaxial stress

The stress condition at point Q is understood clearly by considering a small cube of side a, centered at Q and the
stresses exerted on each face of the cube.

Only three faces are visible but equal and opposite stress components act on the faces at the back.
As cube length a gets smaller, the error involved in the difference between stresses at the face and point is
minimized. If we consider the point Q as a small cube we can calculate the normal and shearing forces acting on

the various faces with area AA.

The condition for mechanical equilibrium for an object is that all of the forces and moments acting on three axes
add up to zero:

ZFxZO,ZFy:O,ZF‘Z=O

YM,=0,%M,=0,%M,=0
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Fig. 1.33
» Fy . = 0 are satisfied since equal and opposite forces are acting on parallel faces of the cube



Y. M, = 0 is satisfied because the shear forces rotating the object around the z-axis are opposite, one causing
counterclockwise and the other clockwise rotation:

I
> M, = (zyrd)a - (1y84)a = 0 \
III/“'I; \
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Fig. 1.34

Similarly from the remaining equations ), M,, = 0, ), M,, = 0, the relations between other shear stresses are
obtained:

Tyz = Tzy Tzx = Txz
Hence it is seen that only 6 stress components are required to define the condition of stress at a given point Q

Ox Txy
o = Txy Tyz

Tyz Oy



Shear stresses are present in all stressed materials except hydrostatically stressed ones

Consider the case of axial loading. The conditions of stress in part of the material is described as:

The only stresses acting on the small cube parallel to the loaded surface are normal stresses because

_P ZO_P
O'—AOCOS —AO

T=A—Osin0c050=0

However if the small cube is rotated by 45 around z-axis, normal and shearing stresses of equal magnitude are
exerted on four faces of the cube

The same loading condition may lead to different deformations at different points in a body, depending on the
orientation of the element considered.



In the case of multiaxial loading of a material, deformations and the strains can be calculated by dividing the loads
into normal and shearing forces in the three axis.

Consider the material as a unit cube with sides equal to 1. Consider also only the normal components of stress to
calculate the normal strains as a generalized Hooke’s law

y T

The effect of each normal stress component on the strain components €y, €y, €, should be calculated separately
and combined.

““YETF B

Vo, 0, VO,
= 4= —
€y E E E
_ Vvoy Vo, 0,
©="F "f TF

This result is valid only as long the stresses do not exceed the proportional limit and as long as the deformations
involved are small



To consider the shear strains in a real stress situation, the shearing stress components should also be considered

Shearing stresses tend to deform a cubic material into an oblique parallelepiped

Two of the angles formed by the four faces under stress are reduced from ZtoZ— y.
2 2 xy

. Vs Vs
and two angles are increased from 2 to 2 + Yxy

The angle yy,, is the shear strain corresponding to the x and y directions in the plane of z

Shear strains on other planes may also be calculated similarly




Plotting successive values of T, against yy,, gives us the shearing
stress-strain diagram for the material

Obtained yield strength, ultimate strength values are about half of

the material from the tensile test \//

For values of the shearing stress which do not exceed the ‘
proportional limit in shear, Hooke’s law for shearing is defined as /
Txy = GVxy
The relations for the other planes are obtained by considering the Y

corresponding stress components (@)
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Tyz = nyz Tox = GVax
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The following group of equations representing the generalized Hooke’s law for a homogeneous isotropic material
under multiaxial loading is obtained:

““YETF B
___vo o v,
Y E E E
v vy o
** E E E
Txy = nyy Tyz = nyz Tox = GVax

The 6 strain components of a material under stress in the elastic region can be calculated from the 6 stress
componentsand any 2 of E, G, v

N Oy VO, VO, Toy :
E E E G
Toy Tyz
€ = —_ =
G G
Oz Vo Vo,
G E E E




The strain energy of deformation per unit of a linear elastic material is

1
UO = Eo-ijeij

1
Up = E (O-xxexx + Oyy€yy t 07,6, t TxyVxy + TyzVyz + szyzx)
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A material of rectangular prism geometry that is
subjected to axial loading deforms into a rectangular
parallelepiped. The prism will elongate along the axis
of the tensile force and will contract in both of the
transverse y and z directions:

PI
For an element in the shape of a cube with unit sides,
the deformed geometry will have sides 1 + €, ,1 —

ve,, 1 — ve, according to the Hooke’s law

If the element is oriented at 45 to the axis of the load,
the cube will transform into an oblique parallelepiped
due to the shearing stress components:

!
Each of the right angles increases or decreases by the P

shearing strain y'that is induced by the shear stress
component of the axial stress and ¥’ = ¥Vmax




Consider the prismatic element obtained by intersecting the unit cubic element by a diagonal plane
It deforms into a slice which has horizontal and vertical sides equalto 1 + €, and 1 — ve,, by the shearing force:

The angles of the undeformed and the deformed slices are
one half of% and % — Ymax respectively

T Ymax
F=3"73
tan% — tan —y"éax 1 —tan —V"Eax
tanﬂ = =
1+ tanZtanlmax 1 4 tapYmax
4 2 2
Since y";ﬂ is a very small angle,
1 — Vrréax
tanf = —1 N y"éax
Also
1—ve
tanf = 1 ad
tex | ] _—
Hence, 1 — ve,
(1+v)ey 8
Ymax = — L
1+ uEx : 1+e

2



(1+v)e,

1+1%vex

Vm ax —

The denominator may be taken as 1 since €, < 1, and the relation between the maximum shearing strain and
the axial strain is obtained:

Ymax = (1 + V)€,

According to Hooke’s law,

Ymax = T"éax €x = %
Tmax Ox
=(14+v)—=
1+
E Oy
—=1+v)
G max

: . : : P P
Recall that the axial stress and the maximum shearing stress are defined as g, = —and T g = —
A 24

E—2(1+)
G_ vV
or
L+
26 v

Hence the constants E, G and v are related to each other for any material
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Hydrostatic and Deviatoric Stresses
_ Okk _ O] +0, +03

. . c
Total stress tensor can be divided into two components: o 3 3
1. Hydrostatic or mean stress tensor (g,,) involving only pure tension or compression D
2. Deviatoric stress tensor (al-'j) representing pure shear with no normal components Gj; = Oy +§51j<31{k

Example on Hydrostatic and Deviatoric Stresses

80 20 —50 . .
a. Find the hydrostatic part of the stresses.
Given the stress state: 6;; = | 20 —40 30 |, . . _
0 30 50 b. Find the deviatoric part of the stresses.

hyd 1 |
Ans. (a) Gijy =Om Sij =3 (011+0221+033) Sij where 6, = 3 (80 -40 +50) = 30 so that

30 0 0
hyd _
Gij =|0 30 0
0 0 30
80 20 =50 30 0 O 50 20 -50
.- dev hyd
(b) By definition, 6j; = 0ji-G;; = | 20 —40 30 [-| 0 30 0[=|20 -70 30

=50 30 50 0 0 30 -50 30 20

Note that the mean hydrostatic stress for cﬂev = (csikfV +GS§V +G§§v ) =0, as expected.



The stress-strain diagram of a material is obtained by conducting a tensile test on the specimen of material

The initial portion of the stress-strain diagram shows proportionality between the stress applied and the
resultant strain according to the Hooke’s law

o=Ee
The largest value of the stress for which Hooke’s law can be used for a material is the proportional limit

For ductile materials with a well defined yield point, it coincides with the yield point, for others Hooke’s law can
be used for stress values slightly larger than the proportional limit.

Physical properties of materials like strength, ductility, corrosion resistance may be significantly affected by
alloying, heat treatment and manufacturing processes

o
Quenched, tempered

alloy steel (A514)

High-carbon steel (A441)

Low-carbon steel (A36)

Pure iron
‘

€
Fig. 2.15

Although the variation of stress with strain tor pure iron and ditterent grades of steel is great and show different
yield strength, ultimate strength and ductility, they posses the same stiffness
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AS.019 4330, 4340, 4350 nickel-chromium-
molybdenum alloy steel hot-rolled plate, tensile
engineering stress-strain curves

Test direction: long transverse. Specimen size = 6.25 mm
diam X 38 mm long, austenitized in salt bath at 936 °C,
20 min, oil quenched. Tested as-quenched with Instron
machine with crosshead velocity of 8.5 mm/s, which
corresponds to strain rate of 0.0033/s

Source: M. Saeglitz and G. Krauss, Deformation, Fracture, and
Mechanical Properties of Low-Temperature-Tempered Martensite
in SAE 43xx Steels, Metall. Mater. Trans., Vol 28A (No. 2),

Feb 1997, p 382
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C1.077 Steel preform powder metal forged cylinder,
compressive stress-strain curves

Test direction: longitudinal. Five steel powder
compositions used: A, Fe-0.27C-2.0Ni-0.5Mo; N2, Fe-
0.17C-2.7Ni-0.8Cr; N7, Fe-0.24C-0.6Ni-0.5Cr-0.2Mo;
S1, Fe-0.01C; S3, Fe-0.33C. Preforms compacted to

785 MPa (114 ksi), sintered at 1199 °C (2190 °F),

30 min, and spheroidized (heating three times above and
below cutectoid point). The sintered and annealed
preforms are compared.

Source: Source Book on Cold Forming, American Society for Metals,

1975, p 208
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C1.048 Class 20 and 40 gray iron casting, tensile and
compressive stress-strain curves

Source: I.L. Herron, R.A. Flinn, and P.K. Trojan, Research for the
article: Mechanical Properties of Gray Iron, Iron Castings Handbook,
C.F. Walton, Ed., Iron Casting Society, 1981, p 235
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$S.001 201 stainless steel, stress-strain curves
showing effect of cold work

Test direction: longitudinal and transverse. Composition:
Fe-17Cr-6.5Mn-4.5Ni. UNS S20100

Source: P.D. Harvey, Engineering Properties of Steel, American Society
for Metals, 1982



If the strains caused in a material by the application of an
axial load disappear when the load is removed, the material
behaves elastically. The largest value of stress for which
elastic behavior continues is the elastic limit.

The elastic limit, proportional limit and the yield point are
equal for plastic materials with a well-defined yield point

The material behaves elastically below the yield point

Above the yield point the material yields. When the load is
removed the stress and strain decrease linearly along a line
parallel to the elastic loading curve.

Overall strain does not return to zero because plastic
deformation has taken place above the yield stress.

The plastic deformation depends not only upon the
maximum value reached by the stress but also upon the
time elapsed before load is removed.

A D
Fig. 2.16

A D
Fig. 2.17



If after being loaded and unloaded, the material is loaded again, the new curve will rise parallel to the initial curve
until it almost reaches point C and then connect with the curved portion of the original diagram.

Note that the straight elastic portion of the new loading curve is longer than the initial due to strain hardening.
The elastic limit has increased but the ductility decreased since the point of rupture is not changed.

If the second loading was done in compression instead of tension, an interesting behavior is observed for ductile
materials

A compressive load is applied after the initial tensile load is removed at point D, compressing the material until
the negative yield strength along a curved portion DHJ of the diagram

When the compressive load is removed at point J the stress returns to zero with an equal slope to the elastic
region.

If the initial tension is large enough to cause strain hardening until point C’, the second compressive stress
reaches its maximum value at H where material yields. While the maximum value of the compressive stress is
less than the yield stress, the total change is equal to twice the yield strength of the material.
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C1.052 Flake graphite, gray iron casting, tensile
stress-strain curves with cyclic loading to increasing
stress levels

Ultimate strength = 230 MPa. Permanent deformation
increases with increasing stress levels.

Source: “Stress/Strain Behaviour of Flake Graphite Cast Irons,”
Broadsheet 157-1, British Cast Iron Research Association
(BCIRA), 1977
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C1.051 Gray iron casting, tensile and compressive
longitudinal and lateral stress-strain curves

Progression of test follows numbers 1-3 (solid line 1 to
dashed line 1 to solid line 2 to dashed line 2, etc.). Solid
lines are load applications; dashed lines are relaxations.
These are relatively high stresses. Composition: Fe-3.2C-

2.198i-0.56Mn-0.0315-0.046P

Source: G.N.J. Gilbert, Stress/Strain Properties of Cast Iron and
Poisson’s Ratio in Tension and Compression, BCIRA J., Vol 9 (No. 3),

May 1961, p 351
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CS.025 Carbon steel, Bauschinger effect on stress-
strain curves

The elastic limit of a metal is lowered after reverse
loading. The area E is the energy expended in prestrain,
and E_ is the energy saved in reverse loading.

Source: C.-C. Li, J.D. Flasck, J.A. Yaker, and W.C. Leslie, On
Minimizing the Bauschinger Effect in Steels by Dynamic Strain Aging,
Metall. Trans. A, Jan 1978, p 86



Fatigue

Although the elastic region of the stress-strain curve is a safe zone against plastic deformation, repeating the load
many times (millions) will cause rupture at a stress much lower than the yield strength of the material, hence
fatigue.

The stress-cycle curve for steel shows that relatively few cycles are enough to cause rupture if the applied
maximum stress is high.

As the magnitude of stress is reduced, the number of cycles to rupture increases. For steel a stress limit is reached
called the endurance limit, below which it will not rupture even for infinitely many cycles.

For non-ferrous metals like aluminum, the stress at failure continues to decrease as the number of loading cycles
is increased. The stress around 500 million cycles is called the fatigue limit.

The mechanism of fatigue is slow propagation of a crack that initiate at an imperfection with each cycle

Sudden brittle fracture occurs when the amount of undamaged material is insufficient to carry the maximum load
Figure fatigue fracture surface
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AS.014 4140 chromium-molybdenum alloy steel bar,
monotonic and cyclic true stress-strain curves

Heat treatment: austenitized 999 °C (1830 °F), 1 h, oil
quenched, tempered 399 °C (750 °F), 1 h, water
quenched. Gage section size = 5.08 mm diam X 7.62 mm
long (0.2 in. diam X 0.3 in. long). Strain rate = 0.5/min.
Test condition: MT, monotonic tension; MC, monotonic
compression; CT, cyclic tension; CC, cyclic compression.
Composition: Fe-0.4C-1Cr-0.2Mo. UNS G41400

Source: P.N. Thielen, M.E Fine, and R.A. Fournelle, Cyclic Stress
Strain Relations and Strain-Controlled Fatigue of 4140 Steel, Acta
Metall., Vol 24 (No. 1), Jan 1976, p 1-10. As published in Aerospace
Structural Metals Handbook, Vol 1, Code 1203, CINDAS/USAF CRDA
Handbooks Operation, Purdue University, 1995, p 18



Modulus of elasticity, GPa

170 C1.058 Gray iron casting, modulus of
elasticity-stress curves
160 Modulus of elasticity (E) for compression of first and
2512th cycle. At maximum compressive stress
150 (0.0020 strain controlled) first cycle, E = 144.95 GPa;
2512th cycle, E = 144.20 GPa
\ Source: G.N.J. Gilbert, “The Cyclic Stress/Strain Properties and Fatigue
140 . Properties of a Flake Graphite Cast Iron Tested under Strain Control—
\§ A Detailed Study,” Report 1621, British Cast Iron Research Association
50 %ﬁ\ (BCIRA), 1985
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Creep

Creep is a performance-based behaviour since it is not an intrinsic materials response.
It is defined as time-dependent deformation at absolute temperatures greater than one half the absolute melting

Diffusion-controlled mechanisms have significant effect on high temperature mechanical properties and

performances.

For example, dislocation climb, concentration of vacancies, new slip systems, and grain boundary sliding all are
diffusion-controlled and affect the behaviour of materials at high temperatures. In addition, corrosion or
oxidation mechanisms, which are diffusion-rate dependent, will have an effect on the life time of materials at high

temperatures.

Constant Load
/ Constant Stress
& 71 -
= dt
Wi |Primary | Secondary Tertiary
I II III
|
Time, t te

Figure 8.3 Strain time curve for a creep test

An empirical relation which describes the strain-time relation is € = ¢; + st(l — exp(rt)) + teg
where r is a constant, & is the strain at the transition from primary to secondary creep and
& Is the steady-state strain rate



de Co™ 2 s I .y
= eneral creep equation
dt . db b eq

where E is the creep strain, C is a constant dependent on the material and the particular creep mechanism, m and b are exponents dependent on the creep
mechanism, Q is the activation energy of the creep mechanism, o is the applied stress, d is the grain size of the material, k is Boltzmann's constant, and T is

T >T’-’>Tl

the absolute temperature

1
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Figure 8.4 Effect of stress and temperature on strain time creep curves
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