
Plasticity and 
Deformation Process

Viscoelasticity and Viscoplasticity



Remember that even elastomers become Hookean (perfectly elastic) below their glass transition 
temperatures and exhibit enthalpic elastic deformation

Enthalpic energy stored in the intermolecular bonds is reflected in the mechanical behavior at this 
condition

Their Brownian motion becomes possible above this energy limit and increases with further 
increasing temperature

Above the glass transition temperature materials gain freedom (entropy) that enable them to 
respond differently to applied mechanical energy.
• entropic elastic deformation
• viscous heat dissipation
• viscous plastic deformation

All materials at practical engineering conditions are viscolelastic to some extent
They give both viscous (liquid-like) and elastic (solid-like) responses to stresses

Hence all materials flow



Viscolelasticity

‘panta roi’ (panta roi) or ‘everything flows’ as Heraclitus said

‘the mountains flow before the Lord’ as prophetess Deborah said

Mountains flow if the time scale of observation is extended to geological scale. 

Using an every-day time scale we can define a solid as a material which either does not flow or 
flows plastically. 

Plastic flow requires a stress larger than a definite stress, the yield stress, and a plastic solid does 
not flow under the action of a stress below that yield stress. 

If we observe the objects for a very long time we see that the limiting stress below which the 
materials do not flow is quite low



Time-temperature equivalence

The difference between the mechanical behavior of a solid and a liquid material at the same 
temperature results only from their glass transition temperatures

The response of matter under stress at high temperature for a short time is identical to the 
response of matter under stress at low temperature for a long period of time

Solids need more time to respond to a stress applied within a time period at a constant 
temperature than liquids

They flow very slowly due to their sluggish molecular motion by diffusion mechanism

Creep is the resulting engineering concept (more on this later)



Consider homogeneous suspensions that consist of both liquid and solid as a model to analyze the 
viscoelastic flow behavior of matter

Suspensions exhibit different degrees of elasticity and viscosity depending on their structure

Consider water as the binder phase of 
the suspension. 

Water behaves purely viscously because 
its molecules move very rapidly it does 
not contain structure.
Its resistance to flow under stress is 
defined as its viscosity, η.

𝜏=𝜂𝛾 ̇

where 𝜏 is the shear stress (Pa) and 𝛾 ̇ is 
the shear rate (1/s)

Consider alumina powder as the filler of 
the suspension

Alumina is a hard, brittle ceramic and 
behaves mostly like an elastic solid under 
shear stress:

𝜏=𝐺𝛾

where 𝜏 is the shear stress, G is the shear 
modulus, 𝛾 is the shear strain

𝜏=𝐹/𝐴𝑟𝑒𝑎
𝛾=𝑑𝑥/𝑑𝑦



Simple shear flow of water between two plates of infinite lengths deforms the liquid according to 
Newtonian flow:

Shear stress 𝜏𝑥𝑧 =
𝐹

𝐴𝑟𝑒𝑎

Shear strain rate  𝛾 =
𝜕𝑉𝑥

𝜕𝑦
=

𝑉0

𝐻

Velocity gradient is linear 𝑉𝑥 =
𝑉0∗𝑦

𝐻

𝜂 =
𝜏𝑦𝑧
 𝛾
=
𝐹 ∗ 𝐻

𝐴 ∗ 𝑉0



The ideal suspension is a homogeneous mixture of water and alumina, powders are well dispersed 
in water without agglomerations

By virtue of the interactions between the binder and filler particles (surface adhesion, wetting, 
hydration), the flow behavior of the mixture changes from Newtonian to non-Newtonian viscosity:

𝜏 = 𝑚  𝛾𝑛 Power law model

where 𝑚 = 𝜇 is the non-Newtonian viscosity, n is the shear rate dependency index. For Newtonian 
materials n=1 and shear thinning occurs when n<1.

Non-Newtonian fluids respond with a more or less than doubled shear rate when the force is 
doubled, depending on whether they show shear thinning or shear thickening. 

Most aqueous ceramic suspensions show shear thinning, so that doubling the force will more than 
double the shear rate, thus making deformation of the material relatively easier at higher shear 
rates.

𝜇 =
𝜏

 𝛾𝑛
=
𝐹 ∗ 𝐻𝑛

𝐴 ∗ 𝑉0
𝑛



The stress-strain relation of non-Newtonian suspensions has been analyzed by combination of a 
purely elastic and a purely viscous component using Maxwell’s model:

The shear stress of purely viscous damper (dashpot) is proportional to the shear rate  𝛾

𝜏𝑦𝑥 = 𝜂  𝛾

The shear stress of purely elastic spring is proportional to the shear strain 𝛾

𝜏𝑦𝑥 = 𝐺𝛾

The relation according to the model is a combination of these (additive strains, equal stresses):

𝜏𝑦𝑥 +
𝜂

𝐺

𝑑𝜏𝑦𝑥

𝑑𝑡
= 𝜂  𝛾

Under steady flow, stress response of the suspension should be constant (independent of time) 
and the flow will be of viscous character

Under sudden flow, stress response of the suspension should be time dependent and  
𝑑𝜏𝑦𝑥

𝑑𝑡
≫ 𝜏𝑦𝑥

So the suspension behaves like a pure elastic solid under sudden deformation.



𝜏𝑦𝑥 +
𝜂

𝐺

𝑑𝜏𝑦𝑥

𝑑𝑡
= 𝜂  𝛾

Maxwell model is applicable to all materials since all materials are viscoelastic to some extent

The ratio of the viscosity of a material to its shear modulus 
𝜂

𝐺
is termed the relaxation time λ

The relaxation time is basically the time it takes for the molecules in the unit cell of the material to 
respond to the surrounding stresses and return to equilibrium structure by Brownian motion.

λ determines the extent of elastic response of a material to stresses and is a function of 
temperature.

Low relaxation time means the material quickly returns to equilibrium structure after the stress is 
removed



Prophetess Deborah: ‘even the mountains flow before the Lord’, M. Reiner’s translation of Bible, 
Judges 5:5

Deborah number is the ratio of the relaxation time to deformation time which is the inverse of 
shear rate:

𝐷𝑒 =
𝜆

𝑡𝑑
, 𝑡𝑑 ≈

1

 𝛾

The higher the Deborah number (deformation time smaller than the relaxation time), the more 
elastic is the response of the material.

Molecular structure of a material is close to equilibrium conditions when the deformation or the 
deformation rate (inversely proportional to deformation time) is small

The response of the material to deformation in that large time frame reflects the molecular 
arrangements as in creep 



Nothing seems more solid-like than the rocks of the earth, but even they flow by creep

Geologists found the viscosities of many rock samples by subjecting the samples to a constant load 
a. for a long time
b. at an elevated temperature
c. under hydrostatic pressure

These very long time scales appropriate for geological studies mean that even very high viscosities 
and the resultant very low shear rates are significant and measurable

Long-term creep experiments on natural quartzites led to viscosities in the region of 3–4×1015 Pa s 

Cooled lava viscosity is 1012 Pa.s and the viscosities for lower crust and upper mantle of Earth are 
found as 3×1019 and 3×1018 Pa.s respectively



The relaxation time for low molecular weight liquids at T>>Tg are very (10-12 s)low so that local 
arrangement of molecules relaxes quickly through Brownian motion

A particle with 200 nm diameter can move 10000 nm in 30 s due to Brownian motion
However liquids with such fast relaxation can behave as elastic solids depending on the 
deformation time

Examples

Liquid water
Relaxation time = 10-12 s
Deformed at a shear rate = 1000/s
Deformation time = 1/1000 s
De = 10-12/0.001 = 10-9

Polymer
Relaxation time = 103 s
Deformed during molding at a shear rate = 1/s
Deformation time = 1 s
De = 1000/1

Mountains
Relaxation time = 1021/1010 = 1011 s
Deformed in 100 years at a shear rate = 1/100000
Deformation time in 100 years = 100000
De = 1011/105 = 1000000



How do solids behave when loaded below their yield stress, especially when examined over very 
long time periods of stress?

Frost and Ashby found an answer to this question by analyzing the creep behavior of many types of 
materials under carefully controlled conditions

The answer: If brought within the range of measurability by increasing the test temperature, almost 
all materials will show creep, however low the applied stress

Creep is the steady-state, continuous deformation of a material when a stress below yield stress is 
applied, and this is usually after an initial linear elastic deformation and may take some time to 
arrive at steady state

Pressurized specimen was taken to a high-enough temperature (T>0.5Tm) to avoid the initiation and 
propagation of cracks and seal up any opening cracks to observe pure creep behavior



At temperatures >0.5Tm atomic diffusion occurs and grains grow but the material is still solid
Creep rates for all materials are brought within the measurable range, i.e. >10−9 s−1

Creep behavior of solids display three identical characteristics:

1. After a long-enough time, a steady creep rate is achieved
2. This creep rate, at low-enough applied stress, usually becomes a linear function of applied stress (Newtonian 

flow)—and is governed by atomic diffusion
3. At higher stresses, the creep rate increases faster than the stress, and usually shows a power-law-like non-

Newtonian behavior



Creep is a performance-based behavior since it is not an intrinsic materials response.

It is defined as time-dependent deformation at absolute temperatures greater than one half the 
absolute melting

Remember that time-dependent deformation (or flow) of fluids is characterized by the coefficient 
of viscosity 𝜂, which is the resistance to flow: 𝜏=𝜂𝛾 ̇

Diffusion-controlled mechanisms have significant effect on high temperature mechanical properties 
and performances. 
• Dislocation climb
• Concentration of vacancies
• New slip systems
• Grain boundary sliding
• Corrosion or oxidation



𝑑𝜀

𝑑𝑡
=
𝐶𝜎𝑚

𝑑𝑏
𝑒−

𝑄
𝑘𝑇General creep equation 

where    is the creep strain, C is a constant dependent on the material and the particular creep mechanism, m and b are exponents dependent on the creep 

mechanism, Q is the activation energy of the creep mechanism, σ is the applied stress, d is the grain size of the material, k is Boltzmann's constant, and T is 

the absolute temperature

The total strain-time relation is 𝜀 = 𝜀𝑖 + 𝜀𝑡 1 − 𝑒𝑥𝑝 𝑟𝑡 + 𝑡  𝜀𝑠𝑠
where r is a constant, 𝜀𝑡 is the strain at the transition from primary to secondary creep and
𝜀𝑠𝑠 is the steady-state strain rate



Experimental measurements of viscoelastic behavior

Two types of rheological tests enable us understand the viscoelastic behavior of materials
• Static tests

Strain build-up under constant stress (creep test)
Stress relaxation under constant strain

• Dynamic tests
Sinusoidally fluctuating strains or stresses are applied to the material and responses are measured 
as a function of

Time
Frequency
Strain amplitude or stress amplitude

Stresses applied or generated during dynamic tests are commonly below the yield strength of the 
material
Strains applied or generated cyclicly range from 0.001 to 1000 (0.1% to 100000%)
Dynamic tests involve fatigue tests for solids and rheological tests for suspensions, melts



Creep test
A sample is subjected to constant stress and deformation is measured as a function of time

A perfectly elastic solid deforms instantaneously according to the Hooke’s law and there is no 
further deformation with time

A viscoelastic solid strains with time because of the motion of molecules relative to each other at a 
rate controlled by the viscosity of the material, the stress, the temperature and the time for which 
the material has been stressed

Polymers creep at room temperature so their creep behavior
is more critical than metals

e.g. cellulose acetate has been subjected to constant loads for 
up to 7000 hours

Strain (increasing with time) divided by constant stress gives
the creep compliance J (inverse of modulus)



Stress relaxation test
A sample is deformed (stretched or compressed) to a given value of strain and the stress necessary 
to maintain that strain within the microstructure is measured as a function of time

It is mostly applied to polymers which have molecular structure such as long chains
As the sample relaxes, the chains change their conformations, disentangle or slide over each other
As a result of this microstructural change, stress within the material decreases

The results are reported as the relaxation modulus Er

Similar to the elastic modulus, relaxation modulus is found by
dividing stress (changing with time here) by the constant strain

Usually involves testing at multiple temperatures because of 
the equivalence of time and temperature for viscoelastic solids
(A test at a high temperature will give the same curve at shorter 
times than a test at a low temperature) 



The Maxwell model is applicable to this experiment where the length is held constant, 
𝑑𝜀

𝑑𝑡
=  𝛾 = 0

By rearrangement of the equation we obtain:

Since 𝜏𝑦𝑥 = 𝜏0 at t=0, at the start of the experiment, integration the above equation gives:

This means that the stress (may be shear or normal stress) decays exponentially with time for a 

simple viscoelastic material with a relaxation time of 
𝜂

𝐺

Since the strain is constant, and time is linearly increasing, t in the equation is equal to the 
instantaneous deformation time which is equal to the inverse of strain rate
So the creep behavior becomes a function of the Deborah number (which decreases with time):

𝜏𝑦𝑥 +
𝜂

𝐺

𝑑𝜏𝑦𝑥

𝑑𝑡
= 𝜂  𝛾 = 0

𝑑𝜏𝑦𝑥

𝜏𝑦𝑥
= −

𝐺

𝜂
𝑑𝑡

𝜏𝑦𝑥 = 𝜏0 exp
−𝑡 ∗ 𝐺

𝜂

𝜏𝑦𝑥 = 𝜏0 exp
−1

𝐷𝑒
= 𝜏0 exp 𝐷𝑒



A similar time dependence of strain results for creep when the Voigt model is used in place of the 
Maxwell model

Maxwell model can not be applied to creep experiments because it only gives the viscous 

contribution at constant load (
𝑑𝜏𝑦𝑥

𝑑𝑡
= 0)

Similarly the Voigt model is not realistic when stress-relaxation is considered, as it omits viscous 
character of the material and just gives the elastic solid contribution

These shortcomings of the two model are overcome by 
their serial or parallel combination as in standard linear 
solid model

Here the number of Voigt or Maxwell elements can be increased
in order to fit the creep or stress relaxation behavior of real
viscoelastic materials

𝜀 = 𝜀0 exp
−𝑡 ∗ 𝐺

𝜂

𝜀 = 𝜀0 exp 𝐷𝑒

𝜏𝑦𝑥 + 0 = 𝜂  𝛾



We can model the behavior of any material at practical engineering conditions by combination of 
these models

Consider the behavior represented by these models in terms of plots of strain versus time when a 
stress is applied at time t1 and it is removed at time t2



Viscoelastic behavior of plastics

Polymers that can be strained significantly at stresses above their yield point are termed plastics
Their time dependent deformation at stresses well below the yield strength is viscoelasticity

All polymers have complex microstructure consisting of molecules with a wide distribution of 
molecular weights, i.e. many different sizes of molecules

If we know the exact number of molecules with each size which can be represented by a Maxwell 
or Voigt element, we can precisely model their viscoelastic behavior by adding that number of 
elements to the combined model

Short molecules have less degree of freedom and can relax in a shorter time (return to their most 
probable orientation)

Long molecules can move, rotate and entangle more which make their relaxation time longer

The chemistry of the molecules, temperature, time frame of deformation also determine the 
viscoelastic response observed



Viscoelastic behavior of plastics



Creep of plastic materials

Some materials do not seem to deform below their yield strengths and deform extensively above it. 
Plastics refer to these materials with low yield strengths.
Plastics at practical engineering conditions are viscoelastic: they also deform viscously 

A common example is plasticine or play-doh. It is a mixture of clay and mineral oil.

This material deforms easily and to a large extent. It is often used to model metal working 
operations such as forging, rolling, milling, extrusion, and cutting due to the similarity of its plastic 
behavior to hot metals

Its response to deformation is represented as     𝜎 = 𝜎𝑌 + 𝜇  𝛾𝑛 Herschel-Bulkley Equation

where 𝜎𝑌 is the yield strength. Viscoplastic materials have yield strengths.



The creep behavior of plasticine was investigated by Barnes et al. under very long-time testing 
(days)

Its flow behavior at loads under yield stress was seen as typical non-Newtonian, steady-state liquid 
behavior:

This means that materials do not really have yield strengths when tested under precise 
rheometrical conditions, where very small shear rates are capable of being measured at very small 
stresses at very long times.

Yield strength is assigned to ductile solids for engineering purposes based on measurements 
obtained under limited conditions.



Dynamic tests for measurement of viscoelasticity

An oscillatory stress or strain is applied to the sample (it varies sinusoidally)

If the material is perfectly elastic, the resultant strain or stress should be completely in-phase with 
the applied stress or strain and vary as:

𝛾 = 𝛾0 sin 𝜔𝑡
Where 𝜔 is the angular frequency in radian/s, equal to 2πf wnere f is the frequency in cycles/s

Hooke’s law applied for small amplitudes of oscillation so that
𝜏 𝑡 = 𝐺𝛾0 sin 𝜔𝑡

For a Newtonian viscous fluid, the resulting stress should be exactly 90° out-of phase with the strain because

𝜏 𝑡 = 𝜂 ∗  𝛾 𝑡 = 𝜂 ∗
𝑑

𝑑𝑡
𝛾0 sin 𝜔𝑡

𝜏 𝑡 = 𝜂 ∗ 𝛾0 ∗ 𝜔 ∗ cos 𝜔𝑡

Purely elastic response Viscoelastic response



The response of a viscoelastic material to an oscillatory strain or stress is characterized by a phase 
angle between 0° and 90°

Its response is partly viscous and partly elastic

A purely viscous response to strain is such that the resulting stress is highest at the highest strain 
rate which occurs at zero strain. Stress is lowest at the lowest strain rate which occurs at the 
highest strain. The stress-strain figure is a circle for viscous materials

Purely elastic response Viscoelastic response



It is possible to measure the modulus of the material at the highest strain (𝛾0) which corresponds 
to the storage modulus G’ or the real component of the complex shear modulus G*

Similarly the modulus measured at the highest strain rate corresponds to the loss modulus G’’ or 
the imaginary component of the complex shear modulus G*

G*, G’, G’’ and δ are related by a simple relationship:

𝜏0 = 𝐺∗𝛾0 sin 𝜔𝑡 + 𝛿

𝜏0 = 𝐺∗ cos 𝛿 𝛾0 sin 𝜔𝑡 + 𝐺∗ sin 𝛿 𝛾0 cos 𝜔𝑡

𝜏0 = 𝐺′𝛾0 sin 𝜔𝑡 + 𝐺′′𝛾0 cos 𝜔𝑡

tan 𝛿 =
𝐺′′

𝐺′
The magnitude of complex viscosity is obtained according to the relationship

𝜂∗ =
𝐺∗

𝜔

𝐺∗ = 𝐺′ + 𝑖𝐺′′



The measured values of the shear moduli G’ and G’’ determine the elastic and viscous character of 
the material.
They depend on frequency (shear rate) and temperature but the effects are inverse

Elastic response (high G’) is observed at high frequencies and low temperatures
Viscous response (high G’’) is observed vice versa
Damping (dissipation of energy relative to its storage) 
is seen when loss modulus is high relative to storage 
modulus (high δ)


