
Plasticity and 
Deformation Process

Stress-strain relations in plasticity

and the Deformation theory



The fundamental problem in the solution of a plasticity problem is to determine how stresses and strains can be 
found  for a specified state of loading on a body.

There are two theories to describe the relation between stresses and strains:

Deformation or total strain theory:
Total strains are directly related to the total stresses by the secant modulus which is a function of the stress level
The strains on an object depend on the final state of stress, they are independent of stress history

Flow or incremental strain theory:
Increments of plastic strain ΔεP are related to increments of plastic stress ΔσP by the tangent modulus which is a 
function of the stress level



The basis for the deformation theory of plasticity is the elastic stress-strain relations and the associated stress and 
strain intensities for multiaxial stress states.

The stress intensity or the effective stress for an elastic material is expressed as
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And the effective strain as
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And 
𝜎𝑒𝑓𝑓 = 𝐸𝜀𝑒𝑓𝑓

The three dimensional elastic stress-strain relations for an isotropic material in terms of Young’s modulus, and 
Poisson’s ratio are:
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Most deformation processes involving thin plates of material are approximated to the plane stress conditions

Plane stress is a state of stress in which the normal stress 𝜎𝑧, and the shear stresses 𝜎𝑥𝑧, 𝜎𝑦𝑧 directed 

perpendicular to the x-y plane are assumed to be zero

The geometry of the body is that of a plate with one dimension much smaller than the others. The loads are 
applied uniformly over the thickness of the plate and act in the plane of the plate as shown.

The plane stress condition is the simplest form of behavior for continuum structures and represents situations 
frequently encountered in practice



Under plane stress conditions 𝜎𝑧 = 0, 𝜏𝑥𝑧 = 𝜏𝑦𝑧 = 0 and 𝜀𝑧 = −
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And the effective stress is
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Example – A thin disk of aluminum is stressed under plane stress conditions. Determine the effective stress and 
strain resulting from the load if the normal stresses in the x and y direction are 70 MPa and 40 MPa, and the 
shearing stress on the plane is 30 MPa. EAl= 70 GPa



In both theories the strains are separated into an elastic component εe and a plastic component εP

The elastic component of strain under uniaxial stress loading is σ/E

The plastic component is represented by a complex equation as will be derived next

Both deformation and incremental theories are based on the assumption that elastic deformation is compressible 
and plastic deformation is incompressible

The compressible nature of elastic deformation is obvious from the fact that Poisson’s ratio for ordinary isotropic 
materials is much less than one-half (0-0.35)



The incompressibilty of plastic deformation is not obvious

Experiments on materials subjected to very high hydrostatic pressures show that the density and volume do not 
significantly change under extremely high pressures.

The dilatation or volumetric strain of materials under hydrostatic stress is

𝜃 = 𝜀𝑥 + 𝜀𝑦 + 𝜀𝑧 = 𝜀 1 − 2𝜈

In which 𝜀 is the total strain under uniaxial stress 𝜎 and 𝜈 is the Poisson’s ratio for total strains

Dilatation can be regarded as the sum of an elastic dilatation and a plastic dilatation

𝜃𝑒 = 𝜀𝑒 1 − 2𝜈𝑒 𝜃𝑝 = 𝜀𝑝 1 − 2𝜈𝑝



𝜃 = 𝜃𝑒 + 𝜃𝑝 = 𝜀 1 − 2𝜈 = 𝜀𝑒 1 − 2𝜈𝑒 + 𝜀𝑝 1 − 2𝜈𝑝
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1 − 2𝜈 =
𝜀𝑒

𝜀
1 − 2𝜈𝑒 +

𝜀 − 𝜀𝑒

𝜀
1 − 2𝜈𝑝

−2𝜈 =
𝜀𝑒

𝜀
−2𝜈𝑒 − 2𝜈𝑝 +

𝜀𝑒

𝜀
2𝜈𝑝

So

𝜈 = 𝜈𝑝 −
𝜀𝑒

𝜀
𝜈𝑝 − 𝜈𝑒

Furthermore the strains can be expressed in terms of the moduli:

𝜀𝑒

𝜀
=

 𝜎 𝐸

 𝜎 𝐸𝑠𝑒𝑐
=
𝐸𝑠𝑒𝑐
𝐸

Finally

𝜈 = 𝜈𝑝 −
𝐸𝑠𝑒𝑐
𝐸

𝜈𝑝 − 𝜈𝑒

Or

𝜈 =
1

2
−
𝐸𝑠𝑒𝑐
𝐸

1

2
− 𝜈𝑒



Since materials are incompressible during plastic deformation, the Poisson’s ratio changes from the elastic value 
to the incompressible value ½ in a very gradual way as the stress is increased above the yield stress
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The stress-strain relations are expressed by Hencky et al. according to the deformation theory as follows:

Strains are separated into elastic and plastic strains:
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The elastic strains are obtained from the Hooke’s law
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Where the mechanical properties E and G are the normal elastic modulus and shear modulus



To obtain the plastic moduli we need to consider the stress-strain diagram in terms of the normal stress and the 
plastic strain

The plastic modulus at any stress above the yield stress is the secant modulus at that point
So
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Where 𝜈𝑝 is the plastic Poisson’s ratio (1/2) and 𝐺𝑝 is the plastic shear modulus:
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The elastic and plastic strains sum to the total strains so
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The stress-strain behavior is divided into three regions: elastic, elastic-plastic and plastic

Only the elastic-plastic region is considered in the deformation theory as a material nonlinearity



Partitioning of the strains into elastic and plastic components helps us understand the deformation theory. 
But it is more practical to determine the strains from a state of multiaxial stress, in a single form that applies to all 
three deformation regions

These total stress-strain relations for an isotropic material in terms of Young’s secant modulus and a continuously 
variable Poisson’s ratio are similarly:
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Deformation theory is workable only if 𝐸𝑠𝑒𝑐 and 𝜈 are expressed as a function of the multiaxial stress state
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The 𝐸𝑠𝑒𝑐 should be expressed as a function of the multiaxial stress state

The general effective stress equation is
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And the general effective strain 
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And 
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The equalization of the 𝜎𝑒𝑓𝑓- 𝜀𝑒𝑓𝑓 curve to the uniaxial 𝜎 − 𝜀 curve (the stresses applied to the material are 

reduced to uniaxial state of stress) enables us to determine the 𝐸𝑠𝑒𝑐 empirically and solve the deformation theory 
problem:
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Relating the material properties 𝐸𝑠𝑒𝑐,  𝜈 for deformation under a multiaxial stress state to the properties 
determined in the usual uniaxial mechanical characterization test is important especially for materials with 
nonlinear stress-strain behavior as their properties are a nonlinear function of all the multiaxial stresses that act.

The 𝜎 − 𝜀 curve obtained from the uniaxial test is the same as the 𝜎𝑒𝑓𝑓- 𝜀𝑒𝑓𝑓 curve which represents all multiaxial 

stresses. This remarkable identity makes the uniaxial stress-strain curve the universal stress-strain curve



Procedure to obtain the secant modulus form a uniaxial stress-strain curve:
Basically the curve should be considered as a set of points each of which is a stress and corresponding strain that 
are obtained during a measurement.

• Enter the stress-strain curve at a specific value of 𝜎𝑒𝑓𝑓 corresponding to the given multiaxial stress state

• Determine 𝐸𝑠𝑒𝑐 graphically by drawing a straight line to the origin.
• Use  𝐸𝑠𝑒𝑐 and the variable 𝜈 in the stress-strain relations to calculate the strains for the specified 𝜎𝑒𝑓𝑓
• The strains 𝜀𝑥, 𝜀𝑦, 𝜀𝑧, 𝛾𝑥𝑦 , 𝛾𝑦𝑧, 𝛾𝑧𝑥 that are given below are the answers we are looking for, not 𝜀𝑒𝑓𝑓 that can 

be obtained directly from the curve. 
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Example – Use the stress-strain diagram for Nickel (𝜈 = 0.31) to calculate its elastic 
modulus and secant modulus for an effective stress state of 400 MPa. 



Example – Use the stress-strain diagram for Zinc (𝜈 = 0.29) to calculate its elastic 
modulus, secant modulus and resulting strains for a plane stress state of 

𝜎𝑥 = 70 𝑀𝑃𝑎, 𝜎𝑥 = 50 𝑀𝑃𝑎, 𝜏𝑥𝑦 = 60 𝑀𝑃𝑎



The modulus is expressed as a function of the stresses using various material models.

Although the secant modulus is dynamic and depends on the stress level, the problem-solving becomes straight-
forward with the help of stress-strain diagrams or models that include strain hardening

Hencky used the von Mises yield criterion and the distortional energy concept to derive the stress-strain relations

The combination of the yield criterion, the stress-strain relations, and the material model gives the complete 
deformation theory of plasticity

Deformation theory helps us predict the stresses and strains at a point on the stress-strain curve but does not 
enable consideration of the path taken to get there.

Because of that, loading and unloading can not be evaluated with the same material model using deformation 
theory and should be considered as separate events.

Another limitation of deformation theory is that all stresses in a multiaxial stress state must be applied in 
proportion to one another because deformation theory is not capable of distinguishing between types of loading.

These restrictions are valid for some plasticity problems and the theory is not generally applicable.

But it is applicable to most practical problems in metal forming and quite useful. Some problems that are easily 
solved with deformation theory are difficult to solve with incremental theory because of the excessively complex 
computation methods.



Proportional loading is when a material is loaded in such a way that the components of the deviatoric stress (pure 
shear) maintain proportionality throughout the load history

It is represented by a straight line passing through the origin in the principal stress space:

The components of deviatoric stresses for a proportional loading are represented as

𝜎𝑖𝑗 = 𝐾 ∗ 𝜎𝑖𝑗
0

Where K is a monotonically increasing function (loading only) and 𝜎𝑖𝑗
0 is an arbitrary state of stress



On the other hand, increments of strain are related to increments of stress as loading progressesin the 
incremental strain theory.
The stress history is accounted for by summing the stress increments (by integrating over the loading path to the 
final stress state)
The strains and stresses are related with a complicated nonlinear function that depends on the loading path

Stress history is important in deformation analysis because the final strain states for two identical final stress 
states may be different if they have different stress histories.

Consider a thin tube subjected to combinations of torsion and axial tension:

The loading in two dimensional stress space is represented for an 
isotropically hardening tube material as

Under simple uniaxial tension along the lone OAB, the material first yields at point A and then strain hardens to 
point B. The permanent plastic normal strains and the resulting elastic strains at point B are



The second simple load path is pure shear along line OCD. Again the material yields at point C and strain hardens 
to point D. The permanent plastic strain and the resultant elastic strain at point D is

The permanent plastic strains remaining in the tube are quite
different for the two cases:

However their effective stresses are equal (since they are on the same yield curve)

Thus they have yielded quite differently due to the different stress histories

The same final plastic strains would result if the tube was applied stress 
through paths OABACD and OEFD

All incremental strains upon unloading from subsequent yield curve are elastic

minus

minus



All the load paths considered are combinations of nonproportional stress components

Thus nonproportional loading leads to stress history dependence of the final strain state for a body.

The plastic deformation at point D can be calculated using deformation theory if the path OD is considered

In that case the plastic strains would be a mixture of normal and shear strains, which is very different from the 
unproportional paths both quantitatively and qualitatively.

Accordingly, we must recognize the dependence of our solution approach on the type of load path in a specific 
plasticity problem.

In reality the plastic strain is a function of both stresses and stress history.
So following the deformation in a step by step manner during loading process by the incremental theory gives the 
most accurate analysis of deformation.

Where K=1/Etan

Integrate the equation for a prescribed load path 


